NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System

Bulletin of the American Meteorological Society - Tập 96 Số 12 - Trang 2059-2077 - 2015
Ariel Stein1,2,3, Roland R. Draxler1,2,3, Glenn D. Rolph1,2,3, Barbara J. B. Stunder4, Mark Cohen1,2,3, Fong Ngan5,3
1Cooperative Institute for Climate and Satellites, College Park, Maryland
2NOAA/Air Resources Laboratory, College Park, Maryland; nGAn-NOAA/Air Resources Laboratory, and
3Univer-sity Research Court, College Park, MD 20740
4NOAA/Air Resources Laboratory, College Park, Maryland
5NOAA/Air Resources Laboratory, and Cooperative Institute for Climate and Satellites, College Park, Maryland

Tóm tắt

Abstract

The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), developed by NOAA’s Air Resources Laboratory, is one of the most widely used models for atmospheric trajectory and dispersion calculations. We present the model’s historical evolution over the last 30 years from simple hand-drawn back trajectories to very sophisticated computations of transport, mixing, chemical transformation, and deposition of pollutants and hazardous materials. We highlight recent applications of the HYSPLIT modeling system, including the simulation of atmospheric tracer release experiments, radionuclides, smoke originated from wild fires, volcanic ash, mercury, and wind-blown dust.

Từ khóa


Tài liệu tham khảo

Angell, 1966, Tetroon trajectories in an urban atmosphere, J. Appl. Meteor., 5, 10.1175/1520-0450(1966)005<0565:TTIAUA>2.0.CO;2

Angell, 1972, Three-dimensional air trajectories determined from tetroon-flights in the planetary boundary layer of the Los Angeles Basin, J. Appl. Meteor., 11, 10.1175/1520-0450(1972)011<0451:TDATDF>2.0.CO;2

Angell, 1976, Tetroon trajectories in the Los Angeles Basin defining the source of air reaching the San Bernardino-Riverside area in late afternoon, J. Appl. Meteor., 15, 10.1175/1520-0450(1976)015<0197:TTITLA>2.0.CO;2

Ashrafi, 2014, Dust storm simulation over Iran using HYSPLIT, J. Environ. Health Sci. Eng., 12, 9,, 10.1186/2052-336X-12-9

Azzi, 1995, Prediction of NO2 and O3 concentrations for NOX plumes photochemically reacting in urban air, Math. Comput. Modell., 21, 39

Baker, 2010, A cluster analysis of long range air transport pathways and associated pollutant concentrations within the UK, Atmos. Environ., 44, 563

Barad, 1958, I and II. Air Force Cambridge Research Center Geophysical Research Paper 59, NTID PB 151424

Becker, 2007, Global backtracking of anthropogenic radionuclides by means of a receptor oriented ensemble dispersion modelling system in support of Nuclear-Test-Ban Treaty verification, Atmos. Environ., 41, 4520

Black, 1994, The new NMC mesoscale Eta model: Description and forecast examples, Wea. Forecasting, 9, 10.1175/1520-0434(1994)009<0265:TNNMEM>2.0.CO;2

Borge, 2007, Analysis of long-range transport influences on urban PM10 using two stage atmospheric trajectory clusters, Atmos. Environ., 41, 4434, 10.1016/j.atmosenv.2007.01.053

Bowyer, 2013, Maximum reasonable radioxenon releases from medical isotope production facilities and their effect on monitoring nuclear explosions, J. Environ. Radioact., 115, 192, 10.1016/j.jenvrad.2012.07.018

Cabello, 2008, Air mass origin and its influence over the aerosol size distribution: A study in SE Spain, Adv. Sci. Res., 2, 47, 10.5194/asr-2-47-2008

Challa, 2008, Sensitivity of atmospheric dispersion simulations by HYSPLIT to the meteorological predictions from a meso-scale model, Environ. Fluid Mech., 8, 367, 10.1007/s10652-008-9098-z

Chen, 2012, Modeling and surface observations of arsenic dispersion from a large Cu-smelter in southwestern Europe, Atmos. Environ., 49, 114, 10.1016/j.atmosenv.2011.12.014

Chen, 2013, Size distribution and concentrations of heavy metals in atmospheric aerosols originating from industrial emissions as predicted by the HYSPLIT model, Atmos. Environ., 71, 234, 10.1016/j.atmosenv.2013.02.013

Chock, 1994, A particle grid air quality modeling approach: 1. The dispersion aspect, J. Geophys. Res., 99, 1019, 10.1029/93JD02795

Chock, 1994, A particle grid air quality modeling approach: 2. Coupling with chemistry, J. Geophys. Res., 99, 1033, 10.1029/93JD02796

Cohen, 1995, Quantitative estimation of the entry of dioxins, furans and hexachlorobenzene into the Great Lakes from airborne and waterborne sources, 115

Cohen, 1997, Exposure to endocrine disruptors from long range air transport of pesticides. CBNS, Queens College, CUNY Rep. to the W. Alton Jones Foundation, 66

Cohen, 1997, Development and application of an air transport model for dioxins and furans, Organohalogen Compd., 33, 214

Cohen, 2002, Modeling the atmospheric transport and deposition of PCDD/F to the Great Lakes, Environ. Sci. Technol., 36, 4831, 10.1021/es0157292

Cohen, 2004, Modeling the atmospheric transport and deposition of mercury to the Great Lakes, Environ. Res., 95, 247, 10.1016/j.envres.2003.11.007

Cohen, 2011, Modeling atmospheric mercury deposition to the Great Lakes

Cohen, 2013, Modeling atmospheric mercury deposition to the Great Lakes: Examination of the influence of variations in model inputs, parameters, and algorithms on model results

Cohen, 2014, Modeling atmospheric mercury deposition to the Great Lakes: Projected consequences of alternative future emissions scenarios

Collini, 2013, Volcanic ash forecast during the June 2011 Cordón Caulle eruption, Nat. Hazards, 66, 389, 10.1007/s11069-012-0492-y

Connan, 2013, Comparison of RIMPUFF, HYSPLIT, ADMS atmospheric dispersion model outputs, using emergency response procedures, with 85Kr measurements made in the vicinity of nuclear reprocessing plant, J. Environ. Radioact., 124, 266, 10.1016/j.jenvrad.2013.06.004

Dee, 2011, The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Quart. J. Roy. Meteor. Soc., 137, 553, 10.1002/qj.828

Ding, 2013, Transport characteristics and origins of carbon monoxide and ozone in Hong Kong, South China, J. Geophys. Res. Atmos., 118, 9475, 10.1002/jgrd.50714

Draxler, 1982, Measuring and modeling the transport and dispersion of kRYPTON-85 1500km from a point source, Atmos. Environ., 16, 2763, 10.1016/0004-6981(82)90027-0

Draxler, 1987, Sensitivity of a trajectory model to the spatial and temporal resolution of the meteorological data during CAPTEX, J. Climate Appl. Meteor., 26, 10.1175/1520-0450(1987)026<1577:SOATMT>2.0.CO;2

Draxler, 1992, Hybrid Single-Particle Lagrangian Integrated Trajectories (HY-SPLIT): Version 3.0—User’s guide and model description. Air Resources Laboratory Tech. Memo, 84

Draxler, 2000, Meteorological factors of ozone predictability at Houston, Texas, J. Air Waste Manag. Assoc., 50, 259, 10.1080/10473289.2000.10463999

Draxler, 2003, Evaluation of an ensemble dispersion calculation, J. Appl. Meteor., 42, 10.1175/1520-0450(2003)042<0308:EOAEDC>2.0.CO;2

Draxler, 2006, The use of global and mesoscale meteorological model data to predict the transport and dispersion of tracer plumes over Washington, D.C., Wea. Forecasting, 21, 383, 10.1175/WAF926.1

Draxler, 2007, Demonstration of a global modeling methodology to determine the relative importance of local and long-distance sources, Atmos. Environ., 41, 776, 10.1016/j.atmosenv.2006.08.052

Draxler, 1982, Horizontal dispersion parameters for long-range transport modeling, J. Appl. Meteor., 21, 10.1175/1520-0450(1982)021<0367:HDPFLR>2.0.CO;2

Draxler, 1988, Modeling the CAPTEX vertical tracer concentration profiles, J. Appl. Meteor., 27, 10.1175/1520-0450(1988)027<0617:MTCVTC>2.0.CO;2

Draxler, 1989

Draxler, 1997, Description of the HYSPLIT_4 modeling system. NOAA Tech. Memo. ERL ARL-224, 24

Draxler, 1998, An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition, Aust. Meteor. Mag., 47, 295

Draxler, 2012, Evaluation of the Transfer Coefficient Matrix (TCM) approach to model the atmospheric radionuclide air concentrations from Fukushima, J. Geophys. Res.

Draxler, 2010, An empirically derived emission algorithm for wind-blown dust, J. Geophys. Res., 115, D16212,

Draxler, 2013, World Meteorological Organization’s model simulations of the radionuclide dispersion and deposition from the Fukushima Daiichi nuclear power plant accident, J. Environ. Radioact., 139, 172, 10.1016/j.jenvrad.2013.09.014

Efstathiou, 2011, A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens, Atmos. Environ., 45, 2260, 10.1016/j.atmosenv.2010.12.008

Escudero, 2006, Determination of the contribution of northern Africa dust source areas to PM10 concentrations over the central Iberian Peninsula using the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT) model, J. Geophys. Res., 10.1029/2005JD006395

Escudero, 2011, Source apportionment for African dust outbreaks over the Western Mediterranean using the HYSPLIT model, Atmos. Res., 99, 518, 10.1016/j.atmosres.2010.12.002

Fay, 1995, Evaluation of Eulerian and Lagrangian atmospheric transport models at the Deutscher Wetterdienst using ANATEX surface tracer data, Atmos. Environ., 29, 2485, 10.1016/1352-2310(95)00144-N

Ferber, 1986, Cross-Appalachian Tracer Experiment (CAPTEX ‘83) Final Report. Air Resources Laboratory NOAA Tech. Memo, 60

Fleming, 2012, Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition, Atmos. Res., 104–105, 1, 10.1016/j.atmosres.2011.09.009

Gaiero, 2013, Ground/satellite observations and atmospheric modeling of dust storms originated in the high Puna-Altiplano deserts (South America): Implications for the interpretation of paleo-climatic archives, J. Geophys. Res., 118, 3817, 10.1002/jgrd.50036

Gasso, 2007, Does dust from Patagonia reach the sub-Antarctic Atlantic Ocean?, Geophys. Res. Lett., 10.1029/2006GL027693

Gerbig, 2003, Toward constraining regional-scale fluxes of CO2 with atmospheric observations over a continent: 2. Analysis of COBRA data using a receptor-oriented framework, J. Geophys. Res., 108, 4757,, 10.1029/2003JD003770

Gery, 1989, A photochemical kinetics mechanism for urban and regional scale computer modeling, J. Geophys. Res., 94, 12, 10.1029/JD094iD10p12925

Gifford, 1961, Use of routine meteorological observations for estimating atmospheric dispersion, Nucl. Saf., 2, 47

Grell, 1994, A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). NCAR Tech. Note NCAR/TN-398+STR, 122

Han, 2005, Comparison between back-trajectory based modeling and Lagrangian backward dispersion modeling for locating sources of reactive gaseous mercury, Environ. Sci. Technol., 39, 1715, 10.1021/es0498540

Heffter, 1993, Volcanic Ash Forecast Transport And Dispersion (VAFTAD) model, Wea. Forecasting, 8, 10.1175/1520-0434(1993)008<0533:VAFTAD>2.0.CO;2

Heffter, 1975, A regional-continental scale transport, diffusion, and deposition model. Part I: Trajectory model. Part II: Diffusion-deposition models

Hegarty, 2013, Evaluation of Lagrangian particle dispersion models with measurements from controlled tracer releases, J. Appl. Meteor. Climatol., 52, 2623, 10.1175/JAMC-D-13-0125.1

Hoke, 1989, The regional analysis and forecast system of the National Meteorological Center. Wea, Forecasting, 4, 10.1175/1520-0434(1989)004<0323:TRAAFS>2.0.CO;2

Janjić, 1990, The step-mountain coordinate: Physical package, Mon. Wea. Rev., 118, 10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2

Janjić, 2003, A nonhydrostatic model based on a new approach, Meteor. Atmos. Phys., 82, 271

Janjić, 2005

Jeong, 2013, Radiological risk assessment caused by RDD terrorism in an urban area, Appl. Radiat. Isot., 79, 1, 10.1016/j.apradiso.2013.04.018

Jeong, 2013, A multitower measurement network estimate of California’s methane emissions, J. Geophys. Res., 118, 11, 10.1002/jgrd.50854

Johnson, 1984, A simple model for predicting the ozone concentration of ambient air, Proc. Eighth Int. Clean Air Conf., 715

Kalnay, 1996, The NCEP/NCAR 40-Year Reanalysis Project, Bull. Amer. Meteor. Soc., 77, 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

Kanamitsu, 1989, Description of the NMC Global Data Assimilation and Forecast System. Wea, Forecasting, 4, 10.1175/1520-0434(1989)004<0335:DOTNGD>2.0.CO;2

Kang, 2005, The New England Air Quality Forecasting Pilot Program: Development of an evaluation protocol and performance benchmark, J. Air Waste Manag. Assoc., 55, 1782, 10.1080/10473289.2005.10464775

Kantha, 2000, Small Scale Processes in Geophysical Fluid Flows, Vol. 67

Karaca, 2010, Distant source contributions to PM10 profile evaluated by SOM based cluster analysis of air mass trajectory sets, Atmos. Environ., 44, 892, 10.1016/j.atmosenv.2009.12.006

Kinoshita, 2011, Assessment of individual radionuclide distributions from the Fukushima nuclear accident covering central-east Japan, Proc. Natl. Acad. Sci. USA, 108, 19, 10.1073/pnas.1111724108

Kinser, 2001, Simulating wet deposition of radiocesium from the Chernobyl accident

Kort, 2008, Emissions of CH4 and N2O over the United States and Canada based on a receptor-oriented modeling framework and COBRA-NA atmospheric observations, Geophys. Res. Lett., 35, L18808,, 10.1029/2008GL034031

Leadbetter, 2015, Sensitivity of the modelled deposition of Caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME, J. Environ. Radioact., 139, 200, 10.1016/j.jenvrad.2014.03.018

Lee, 2009, Improving SCIPUFF dispersion forecasts with NWP ensembles, J. Appl. Meteor. Climatol., 48, 2305, 10.1175/2009JAMC2171.1

Lin, 2003, A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model, J. Geophys. Res., 108, 4493, 10.1029/2002JD003161

Machta, 1992: Finding the site of the first Soviet nuclear test in 1949, Bull. Amer. Meteor. Soc., 73, 10.1175/1520-0477(1992)073<1797:FTSOTF>2.0.CO;2

Markou, 2010, Cluster analysis of five years of back trajectories arriving in Athens, Greece, Atmos. Res., 98, 438, 10.1016/j.atmosres.2010.08.006

Mastin, 2009, A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions, J. Volcanol. Geotherm. Res., 186, 10, 10.1016/j.jvolgeores.2009.01.008

Mesinger, 2006, North American Regional Reanalysis, Bull. Amer. Meteor. Soc., 87, 343, 10.1175/BAMS-87-3-343

Moroz, 2010, Predictions of dispersion and deposition of fallout from nuclear testing using the NOAA-Hysplit Meteorological Model, Health Phys., 99, 252, 10.1097/HP.0b013e3181b43697

Nehrkorn, 2010, Coupled Weather Research and Forecasting–Stochastic Time-Inverted Lagrangian Transport (WRF–STILT) model, Meteor. Atmos. Phys., 107, 51, 10.1007/s00703-010-0068-x

Ngan, 2015, Inline coupling of WRF–HYSPLIT: Model development and evaluation using tracer experiments, J. Appl. Meteor. Climatol., 54, 1162, 10.1175/JAMC-D-14-0247.1

Pasken, 2005, Using dispersion and mesoscale meteorological models to forecast pollen concentrations, Atmos. Environ., 39, 7689, 10.1016/j.atmosenv.2005.04.043

Pasquill, 1961, The estimation of the dispersion of windborne material, Meteor. Mag., 90, 33

Philips, 1979, The nested grid model. NOAA/National Weather Service Tech. Rep. NWS-22, 80 pp.

Pielke, 1992, A comprehensive meteorological modeling system—RAMS, Meteor. Atmos. Phys., 49, 69, 10.1007/BF01025401

Potempski, 2008, Multi-model ensemble analysis of the ETEX-2 experiment, Atmos. Environ., 42, 7250, 10.1016/j.atmosenv.2008.07.027

Rolph, 1992, Modeling sulfur concentrations and depositions in the United States during ANATEX, Atmos. Environ., 26A, 73, 10.1016/0960-1686(92)90262-J

Rolph, 1993, The use of model-derived and observed precipitation in long-term sulfur concentration and deposition modeling, Atmos. Environ., 27A, 2017, 10.1016/0960-1686(93)90275-4

Rolph, 1993, Real-Time Environmental Applications and Display sYstem (READY), Proc. Topical Meeting on Environmental Transport and Dosimetry, 113

Rolph, 2009, Description and verification of the NOAA Smoke Forecasting System: The 2007 fire season, Wea. Forecasting, 24, 361, 10.1175/2008WAF2222165.1

Rolph, 2014, Modeling the fallout from stabilized nuclear clouds using the HYSPLIT atmospheric dispersion model, J. Environ. Radioact., 136, 41, 10.1016/j.jenvrad.2014.05.006

Ryaboshapko, 2007, Intercomparison study of atmospheric mercury models: 1. Comparison of models with short-term measurements, Sci. Total Environ., 376, 228, 10.1016/j.scitotenv.2007.01.072

Ryaboshapko, 2007, Intercomparison study of atmospheric mercury models: 2. Modelling results vs. long-term observations and comparison of country deposition budgets, Sci. Total Environ., 377, 319, 10.1016/j.scitotenv.2007.01.071

Schaum, 2010, Screening level assessment of risks due to dioxin emissions from burning oil from the BP Deep Water Horizon Gulf of Mexico spill, Environ. Sci. Technol., 44, 9383, 10.1021/es103559w

Skamarock, 2008, A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113

Slade, 1966, Estimates of dispersion from pollutant releases of a few seconds to 8 hours in duration

Slade, 1968, Meteorology and atomic energy 1968, 10.2172/4492043

Smith, 1950, The widespread smoke layer from Canadian forest fires during late September 1950, Mon. Wea. Rev., 78, 10.1175/1520-0493(1950)078<0180:TWSLFC>2.0.CO;2

Solazzo, 2013, Pauci ex tanto numero: Reduce redundancy in multi-model ensembles, Atmos. Chem. Phys., 13, 8315, 10.5194/acp-13-8315-2013

Solazzo, 2012, Regional scale atmospheric dispersion simulation of accidental releases of radionuclides from Fukushima Dai-ichi reactor, Atmos. Environ., 61, 66, 10.1016/j.atmosenv.2012.06.082

Start, 1974, Regional effluent dispersion calculations considering spatial and temporal meteorological variations

Stein, 2000, Incorporation of detailed chemistry into a three-dimensional Lagrangian–Eulerian hybrid model: Application to regional tropospheric ozone, Atmos. Environ., 34, 4361, 10.1016/S1352-2310(00)00204-1

Stein, 2007, A hybrid modeling approach to resolve pollutant concentrations in an urban area, Atmos. Environ., 41, 9410, 10.1016/j.atmosenv.2007.09.004

Stein, 2009, Verification of the NOAA Smoke Forecasting System: Model sensitivity to the injection height, Wea. Forecasting, 24, 379, 10.1175/2008WAF2222166.1

Stein, 2011, Modeling PM10 originated from dust intrusions in the southern Iberian Peninsula using HYSPLIT, Wea. Forecasting, 26, 236, 10.1175/WAF-D-10-05044.1

Stein, 2015, Potential use of transport and dispersion model ensembles for forecasting applications, Wea. Forecasting, 30, 639, 10.1175/WAF-D-14-00153.1

Stohl, 2002, A replacement for simple back trajectory calculations in the interpretation of atmospheric trace substance measurements, Atmos. Environ., 36, 4635, 10.1016/S1352-2310(02)00416-8

Stohl, 2005, Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2, Atmos. Chem. Phys., 5, 2461, 10.5194/acp-5-2461-2005

Stunder, 1996, An assessment of the quality of forecast trajectories, J. Appl. Meteor., 35, 10.1175/1520-0450(1996)035<1319:AAOTQO>2.0.CO;2

Stunder, 2007, Airborne volcanic ash forecast area reliability, Wea. Forecasting, 22, 1132, 10.1175/WAF1042.1

Tupper, 2006, Aircraft encounters with volcanic clouds over Micronesia, Oceania, 2002/03, Aust. Meteor. Mag., 55, 289

Wain, 2006, Meteorological overview and verification of HYSPLIT and AAQFS dust forecasts for the duststorm of 22-24 October 2002, Aust. Meteor. Mag., 55, 35

Wang, 2011, Global sand and dust storms in 2008: Observation and HYSPLIT model verification, Atmos. Environ., 45, 6368, 10.1016/j.atmosenv.2011.08.035

Webley, 2009, Preliminary sensitivity study of eruption source parameters for operational volcanic ash cloud transport and dispersion models—A case study of the, J. Volcanol. Geotherm. Res., 186, 108, 10.1016/j.jvolgeores.2009.02.012

Wen, 2012, A backward-time stochastic Lagrangian air quality model, Atmos. Environ., 54, 373, 10.1016/j.atmosenv.2012.02.042

Wendell, 1972, Mesoscale wind fields and transport estimates determined from a network of wind towers, Mon. Wea. Rev., 100, 10.1175/1520-0493(1972)100<0565:MWFATE>2.3.CO;2

Witham, 2007, Comparison of VAAC atmospheric dispersion models using the 1 November 2004 Grimsvötn eruption, Meteor. Appl., 14, 27, 10.1002/met.3

Yerramilli, 2012, An integrated WRF/HYSPLIT modeling approach for the assessment of PM2.5 source regions over the Mississippi Gulf Coast region, Air Qual. Atmos. Health, 5, 401, 10.1007/s11869-010-0132-1

Zhao, 2009, Atmospheric inverse estimates of methane emissions from Central California, J. Geophys. Res., 114, D16302, 10.1029/2008JD011671