NO and NO2 emissions of waste tire pyrolysis oil (TPO) blended with diesel in a flameless combustor
Tóm tắt
Combustion systems can use tire pyrolysis oil (TPO) due to its high energy content. The amount of nitrogen and sulfur present in the TPO should result in NOx and SO2 emissions when combustion occurs. A flameless combustion regime can reduce pollutant emissions, mainly NOx, with greater thermal efficiency. This work aims to analyze the NO and NO2 emission in different diesel fuel mixtures with TPO, 5% (TPO5), and 10% (TPO10) by mass, in a flameless regime. A combustor was used operating with a maximum heat input of 13 kW and an effervescent injector promoting an average Sauter diameter of 33.89 ± 3.77 µm. The uniform temperature profile within the combustor characterizes the flameless combustion regime that was reached after 50 min for diesel and after 40 min for TPO5 and TPO10 from the ignition. TPO5 and TPO10 have similar NO emissions in flameless combustion. The NO2 emission increases with the TPO content in the mixture.
Tài liệu tham khảo
ETRMA: The ETRMA Statistics Report. Eur. tyre rubber Manuf. Assoc. 48 (2019)
Tyre, T.E.: In Europe 95% of all End of Life Tyres were collected and treated in 2019 Brussels , 11th May 2021-ETRMA , the European Tyre and Rubber Manufacturers ’ Association , has consolidated data on the management of End of Life Tyres (ELTs ) for ELTs (2021)
Williams, P.T.: Pyrolysis of waste tyres: a review. Waste Manag. 33, 1714–1728 (2013). https://doi.org/10.1016/j.wasman.2013.05.003
Suchocki, T., Witanowski, L., Lampart, P., Kazimierski, P., Januszewicz, K., Gawron, B.: Experimental investigation of performance and emission characteristics of a miniature gas turbine supplied by blends of kerosene and waste tyre pyrolysis oil. Energy 215, 119125 (2021). https://doi.org/10.1016/j.energy.2020.119125
Frigo, S., Seggiani, M., Puccini, M., Vitolo, S.: Liquid fuel production from waste tyre pyrolysis and its utilisation in a Diesel engine. Fuel 116, 399–408 (2014). https://doi.org/10.1016/j.fuel.2013.08.044
Murugan, S., Ramaswamy, M.C., Nagarajan, G.: The use of tyre pyrolysis oil in diesel engines. Waste Manag. 28, 2743–2749 (2008). https://doi.org/10.1016/j.wasman.2008.03.007
Williams, P.T., Bottrill, R.P., Cunliffe, A.M.: Combustion of tyre pyrolysis oil. Process Saf. Environ. Prot. 76, 291–301 (1998). https://doi.org/10.1205/095758298529650
Wünning, J.A., Wünning, J.G.: Flameless oxidation to reduce thermal no-formation. Prog. Energy Combust. Sci. (1997). https://doi.org/10.1016/s0360-1285(97)00006-3
Wang, Y.D., McIlveen-Wright, D., Huang, Y., Hewitt, N., Eames, P., Rezvani, S., McMullan, J., Roskilly, A.P.: The application of FLOX/COSTAIR technologies to reduce NOx emissions from coal/biomass fired power plant: a technical assessment based on computational simulation. Fuel 86, 2101–2108 (2007). https://doi.org/10.1016/j.fuel.2007.01.013
Mahendra Reddy, V., Kumar, S.: Development of high intensity low emission combustor for achieving flameless combustion of liquid fuels. Propuls. Power Res. 2, 139–147 (2013). https://doi.org/10.1016/j.jppr.2013.04.006
Plessing, T., Peters, N., Wünning, J.G.: Laseroptical investigation of highly preheated combustion with strong exhaust gas recirculation. Symp. Combust. 27, 3197–3204 (1998). https://doi.org/10.1016/S0082-0784(98)80183-5
Levy, Y., Sherbaum, V., Arfi, P.: Basic thermodynamics of FLOXCOM, the low-NOx gas turbines adiabatic combustor. Appl. Therm. Eng. 24, 1593–1605 (2004). https://doi.org/10.1016/j.applthermaleng.2003.11.022
Weber, R., Gupta, A.K., Mochida, S.: High temperature air combustion (HiTAC): HOW it all started for applications in industrial furnaces and future prospects. Appl. Energy 278, 115551 (2020). https://doi.org/10.1016/j.apenergy.2020.115551
Katsuki, M., Hasegawa, T.: The science and technology of combustion in highly preheated air. In: Symposium (International) on Combustion (1998)
Cho, E.S., Danon, B., de Jong, W., Roekaerts, D.J.E.M.: Behavior of a 300kWth regenerative multi-burner flameless oxidation furnace. Appl. Energy 88, 4952–4959 (2011). https://doi.org/10.1016/j.apenergy.2011.06.039
Cho, E.S., Shin, D., Lu, J., de Jong, W., Roekaerts, D.J.E.M.: Configuration effects of natural gas fired multi-pair regenerative burners in a flameless oxidation furnace on efficiency and emissions. Appl. Energy 107, 25–32 (2013). https://doi.org/10.1016/j.apenergy.2013.01.035
Karyeyen, S., Feser, J.S., Jahoda, E., Gupta, A.K.: Development of distributed combustion index from a swirl-assisted burner. Appl. Energy 268, 114967 (2020). https://doi.org/10.1016/j.apenergy.2020.114967
Arghode, V.K., Gupta, A.K.: Effect of flow field for colorless distributed combustion (CDC) for gas turbine combustion. Appl. Energy (2010). https://doi.org/10.1016/j.apenergy.2009.09.032
Dally, B.B., Riesmeier, E., Peters, N.: Effect of fuel mixture on moderate and intense low oxygen dilution combustion. Combust. Flame (2004). https://doi.org/10.1016/j.combustflame.2004.02.011
Cavaliere, A., Joannon, M.: Mild Combustion. Prog. Energy Combust. Sci. 30, 329–366 (2004)
Szegö, G.G., Dally, B.B., Nathan, G.J.: Operational characteristics of a parallel jet MILD combustion burner system. Combust. Flame (2009). https://doi.org/10.1016/j.combustflame.2008.08.009
Mancini, M., Schwöppe, P., Weber, R., Orsino, S.: On mathematical modeling of flameless combustion. Combust. Flame 150, 54–59 (2007). https://doi.org/10.1016/j.combustflame.2007.03.007
Maruta, K., Muso, K., Takeda, K., Niioka, T.: Reaction zone structure in flameless combustion. Proc. Combust. Inst. 28, 2117–2123 (2000). https://doi.org/10.1016/S0082-0784(00)80621-9
Mohamed, H., Hmaeid, B.: Influence of turbulent mixing intensity on the MILD combustion and the pollutant formation. Int. J. Energy Environ. Eng. 3, 1–6 (2012). https://doi.org/10.1186/2251-6832-3-22
de Azevedo, C.G., de Andrade, J.C., de Souza Costa, F.: Flameless compact combustion system for burning hydrous ethanol. Energy (2015). https://doi.org/10.1016/j.energy.2015.07.049
Barbosa, J.A., de Andrade, J.C., de Souza Costa, F., Coronado, C.J.R., de Azevedo, C.G., de Andrade, R.A.: Temperature profile and gas emissions of jet fuel using a low power flameless combustor. J. Braz. Soc. Mech. Sci. Eng. 44, 1–13 (2022). https://doi.org/10.1007/s40430-021-03305-w
Chumpitaz, G.R.A., Coronado, C.J.R., Carvalho, J.A., Andrade, J.C., Mendiburu, A.Z., Pinto, G.M., de Souza, T.A.: Design and study of a pure tire pyrolysis oil (TPO) and blended with Brazilian diesel using Y-Jet atomizer. J. Braz. Soc. Mech. Sci. Eng. 41, 1–20 (2019). https://doi.org/10.1007/s40430-019-1632-z
Lefebvre, A.H., McDonell, V.G.: Atomization and sprays. CRC Press, Boca Raton (2017)
Konstantinov, D., Marsh, R., Bowen, P., Crayford, A.: Effervescent atomization for industrial energy-technology review. At. Sprays 20, 525–552 (2010). https://doi.org/10.1615/AtomizSpr.v20.i6.40
Sovani, S.D., Sojka, P.E., Lefebvre, A.H.: Effervescent atomization. Prog. Energy Combust. Sci. 27, 483–521 (2001). https://doi.org/10.1016/S0360-1285(00)00029-0
Veríssimo, A.S., Rocha, A.M.A., Costa, M.: Importance of the inlet air velocity on the establishment of flameless combustion in a laboratory combustor. Exp. Therm. Fluid Sci. 44, 75–81 (2013). https://doi.org/10.1016/j.expthermflusci.2012.05.015
Mi, J., Li, P., Dally, B.B., Craig, R.A.: Importance of initial momentum rate and air-fuel premixing on moderate or intense low oxygen dilution (MILD) combustion in a recuperative furnace. Energy Fuels (2009). https://doi.org/10.1021/ef900866v
Reddy, V.M., Katoch, A., Roberts, W.L., Kumar, S.: Experimental and numerical analysis for high intensity swirl based ultra-low emission flameless combustor operating with liquid fuels. Proc. Combust. Inst. (2015). https://doi.org/10.1016/j.proci.2014.05.070
Derudi, M., Rota, R.: 110th anniversary: MILD combustion of liquid hydrocarbon-alcohol blends. Ind. Eng. Chem. Res. (2019). https://doi.org/10.1021/acs.iecr.9b02374
Rebola, A., Costa, M., Coelho, P.J.: Experimental evaluation of the performance of a flameless combustor. Appl. Therm. Eng. 50, 805–815 (2013). https://doi.org/10.1016/j.applthermaleng.2012.07.027
Kumar, S., Paul, P.J., Mukunda, H.S.: Studies on a new high-intensity low-emission burner. Proc. Combust. Inst. 29, 1131–1137 (2002)
Reddy, V.M., Trivedi, D., Kumar, S.: Experimental investigations on lifted spray flames for a range of coflow conditions. Combust. Sci. Technol. 184, 44–63 (2012). https://doi.org/10.1080/00102202.2011.615770
Ali, G., Zhang, T., Wu, W., Zhou, Y.: Effect of hydrogen addition on NOx formation mechanism and pathways in MILD combustion of H2-rich low calorific value fuels. Int. J. Hydrog. Energy. 45, 9200–9210 (2020). https://doi.org/10.1016/j.ijhydene.2020.01.027
Miller, J.A., Bowman, C.T.: Mechanism and modeling of nitrogen chemistry in combustor. Prog. Energy Combust. Sci. 15, 287–338 (1989)
Barlow, R.S., Carter, C.D.: Raman/Rayleigh/LIF measurements of nitric oxide formation in turbulent hydrogen jet flames. Combust. Flame 97, 261–280 (1994). https://doi.org/10.1016/0010-2180(94)90020-5
Khidr, K.I., Eldrainy, Y.A., EL-Kassaby, M.M.: Towards lower gas turbine emissions: flameless distributed combustion. Renew. Sustain. Energy Rev. 67, 1237–1266 (2017). https://doi.org/10.1016/j.rser.2016.09.032
Cameretti, M.C., Tuccillo, R., Reale, F., Piazzesi, R.: Liquid bio-fuels in an EGR equipped micro gas turbine. In: Proceedings of the ASME Turbo Expo (2011)
Hori, M.: Experimental study of nitrogen dioxide formation in combustion systems. Symp. Combust. 21, 1181–1188 (1988). https://doi.org/10.1016/S0082-0784(88)80349-7
Derudi, M., Rota, R.: Experimental study of the mild combustion of liquid hydrocarbons. Proc. Combust. Inst. (2011). https://doi.org/10.1016/j.proci.2010.06.120
Mahendra Reddy, V., Sawant, D., Trivedi, D., Kumar, S.: Studies on a liquid fuel based two stage flameless combustor. Proc. Combust. Inst. (2013). https://doi.org/10.1016/j.proci.2012.06.028