NMR investigations unveil phase composition–property correlations in Sr0.55Na0.45SiO2.775 fast ion conductor

Solid State Nuclear Magnetic Resonance - Tập 84 - Trang 204-209 - 2017
P. Lokeswara Rao1,2, Bholanath Pahari3, M. Shivanand4, Tukaram Shet4, K.V. Ramanathan1
1NMR Research Centre, Indian Institute of Science, Bangalore, 560012, India
2Physics Department, Indian Institute of Science, Bangalore 560012, India
3Department of Physics, Goa University, Taleigao Plateau, Goa 403206, India
4Materials Research Centre, Indian Institute of Science, Bangalore 560012, India

Tài liệu tham khảo

Jacobson, 2010, Materials for solid oxide fuel cells, Chem. Mater, 22, 660, 10.1021/cm902640j Malavasi, 2010, Oxide-ion and proton conducting electrolyte materials for clean energy application: structural and mechanistic features, Chem. Soc. Rev., 39, 4370, 10.1039/b915141a Aguadero, 2012, Materials development for intermediate-temperature solid oxide electrochemical devices, J. Mater. Sci., 47, 3925, 10.1007/s10853-011-6213-1 Singh, 2013, Monoclinic Sr1-xNaxSiO3-0.5x: new superior oxide ion electrolytes, J. Am. Chem. Soc., 135, 10149, 10.1021/ja4042737 Martinez-Coronado, 2014, Structural investigation of the oxide-ion electrolyte with SrMO3 (M=Si/Ge) structure, J. Mater. Chem. A, 2, 4355, 10.1039/C3TA15309F Wei, 2014, Sr3-3xNa3xSi3O9-1.5x (x=0.45) as a superior solid oxide-ion electrolyte for intermediate temperature-solid oxide fuel cells, Energy Environ. Sci., 7, 1680, 10.1039/C3EE43730B Bayliss, 2014, On the oxide ion conductivity of potassium doped strontium silicates, Energy Environ. Sci., 7, 2999, 10.1039/C4EE00734D Bayliss, 2014, Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory, J. Mater. Chem. A, 2, 17919, 10.1039/C4TA04299A Evans, 2014, On Sr1-xNaxSiO3-0.5x new superior fast ion conductors, Chem. Mater, 26, 5187, 10.1021/cm502850m Tealdi, 2014, Nature of conductivity in SrSiO3-based fast ion conductors, Chem. Commun., 50, 14732, 10.1039/C4CC07025A Jee, 2015, On the cause of conductivity degradation in sodium strontium silicate ionic conductor, Chem. Commun., 51, 9640, 10.1039/C5CC02638E Lei, 2015, Amorphous Na2Si2O5 as a fast Na+ conductor: an ab initio molecular dynamics simulation, J. Mater. Chem. A, 3, 19920, 10.1039/C5TA04474J Peet, 2015, Na+ mobility in sodium strontium silicate fast ion conductors, Chem. Commun., 51, 17163, 10.1039/C5CC06644A Chien, 2016, On the origin of high ionic conductivity in Na-Doped SrSiO3, Chem. Sci., 7, 3667, 10.1039/C5SC04270D Sood, 2016, Co-existence of amorphous and crystalline phases in Na-Doped SrSiO3 system, RSC Adv., 6, 20211, 10.1039/C5RA27442G Jee, 2016, Phase relationship and ionic conductivity in Na–SrSiO3 ionic conductor, J. Am. Ceram. Soc., 99, 324, 10.1111/jace.13925 Inglis, 2016, Structure and sodium ion dynamics in sodium strontium silicate investigated by multinuclear solid state NMR, Chem. Mater, 28, 3850, 10.1021/acs.chemmater.6b00941 Mackenzie, 2002, Multinuclear solid-state NMR of inorganic materials, Pergamon Mater. Ser., 6 Ashbrook, 2014, New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei, J. Am. Chem. Soc., 136, 15440, 10.1021/ja504734p Eden, 2012, NMR studies of oxide-based glasses, Annu. Rep. Prog. Chem. Sect. C. Phys. Chem., 108, 177, 10.1039/c2pc90006h Massiot, 2002, Modelling one and two dimensional solid-state NMR spectra, Magn. Reson. Chem., 40, 70, 10.1002/mrc.984 Murdoch, 1985, High-resolution 29Si NMR study of silicate and aluminosilicate glasses: the effect of network-modifying cations, Am. Mineral., 70, 332 Heidemann, 1992, 29Si–Und 23Na–Festkörper-MAS-NMR-Untersuchungen an Modifikationen des Na2Si2O5, Z. Anorg. Allg. Chem., 617, 169, 10.1002/zaac.19926170129 Xue, 1993, 23Na NMR chemical shifts and local Na coordination environments in silicate crystals, melts and glasses, Phys. Chem. Min., 20, 297, 10.1007/BF00215100 Czjzek, 1981, Atomic coordination and the distribution of electric-field gradients in amorphous solids, Phys. Rev. B, 23, 2513, 10.1103/PhysRevB.23.2513 Neuville, 2004, Al environment in tectosilicate and peraluminous glasses: a 27Al MQ-MAS NMR, Raman, and XANES investigation, Geochim. Cosmochim. Acta, 68, 5071, 10.1016/j.gca.2004.05.048 Florian, 2007, 27Al NMR study of the structure of lanthunum- and yttrium-based aluminosilicate glasses and melts, J. Phys. Chem. B, 111, 9747, 10.1021/jp072061q Pahari, 2012, Composition-property-structure correlations of scandium aluminosilicate glasses revealed by multinuclear 45Sc, 27Al, and 29Si solid-state NMR, J. Am. Ceram. Soc., 95, 2545, 10.1111/j.1551-2916.2012.05288.x Iftekhar, 2012, Properties and structures of RE2O3–Al2O3–SiO2 (RE=Y, Lu) glasses probed by molecular dynamics simulations and solid-state NMR: the roles of aluminium and rare-earth ions for dictating the microhardness, J. Phys. Chem. C, 116, 18394, 10.1021/jp302672b Koller, 1994, 23Na NMR spectroscopy of solids: interpretation of quadrupole interaction parameters and chemical shifts, J. Phys. Chem, 98, 1544, 10.1021/j100057a004 Frydman, 1995, Isotropic spectra of half-integer quadrupolar spins from Bidimensional magic-angle-spinning NMR, J. Am. Chem. Soc., 117, 5367, 10.1021/ja00124a023 Amoureux, 1996, Z filtering in MQMAS NMR, J. Magn. Reson. A, 123, 116, 10.1006/jmra.1996.0221 Hayashi, 2012, Superionic glass-ceramic electrolytes for room-temperarure rechargeable sodium Batteries, Nat. Commun., 3, 856, 10.1038/ncomms1843 Hayashi, 2014, High sodium ion conductivity of glass-ceramic electrolytes with cubic Na3PS4, J. Power Sources, 258, 420, 10.1016/j.jpowsour.2014.02.054 Kahlenberg, 1999, The crystal structure of δ-Na2Si2O5, J. Solid State Chem., 146, 380, 10.1006/jssc.1999.8365