NMR investigations unveil phase composition–property correlations in Sr0.55Na0.45SiO2.775 fast ion conductor
Tài liệu tham khảo
Jacobson, 2010, Materials for solid oxide fuel cells, Chem. Mater, 22, 660, 10.1021/cm902640j
Malavasi, 2010, Oxide-ion and proton conducting electrolyte materials for clean energy application: structural and mechanistic features, Chem. Soc. Rev., 39, 4370, 10.1039/b915141a
Aguadero, 2012, Materials development for intermediate-temperature solid oxide electrochemical devices, J. Mater. Sci., 47, 3925, 10.1007/s10853-011-6213-1
Singh, 2013, Monoclinic Sr1-xNaxSiO3-0.5x: new superior oxide ion electrolytes, J. Am. Chem. Soc., 135, 10149, 10.1021/ja4042737
Martinez-Coronado, 2014, Structural investigation of the oxide-ion electrolyte with SrMO3 (M=Si/Ge) structure, J. Mater. Chem. A, 2, 4355, 10.1039/C3TA15309F
Wei, 2014, Sr3-3xNa3xSi3O9-1.5x (x=0.45) as a superior solid oxide-ion electrolyte for intermediate temperature-solid oxide fuel cells, Energy Environ. Sci., 7, 1680, 10.1039/C3EE43730B
Bayliss, 2014, On the oxide ion conductivity of potassium doped strontium silicates, Energy Environ. Sci., 7, 2999, 10.1039/C4EE00734D
Bayliss, 2014, Understanding the defect chemistry of alkali metal strontium silicate solid solutions: insights from experiment and theory, J. Mater. Chem. A, 2, 17919, 10.1039/C4TA04299A
Evans, 2014, On Sr1-xNaxSiO3-0.5x new superior fast ion conductors, Chem. Mater, 26, 5187, 10.1021/cm502850m
Tealdi, 2014, Nature of conductivity in SrSiO3-based fast ion conductors, Chem. Commun., 50, 14732, 10.1039/C4CC07025A
Jee, 2015, On the cause of conductivity degradation in sodium strontium silicate ionic conductor, Chem. Commun., 51, 9640, 10.1039/C5CC02638E
Lei, 2015, Amorphous Na2Si2O5 as a fast Na+ conductor: an ab initio molecular dynamics simulation, J. Mater. Chem. A, 3, 19920, 10.1039/C5TA04474J
Peet, 2015, Na+ mobility in sodium strontium silicate fast ion conductors, Chem. Commun., 51, 17163, 10.1039/C5CC06644A
Chien, 2016, On the origin of high ionic conductivity in Na-Doped SrSiO3, Chem. Sci., 7, 3667, 10.1039/C5SC04270D
Sood, 2016, Co-existence of amorphous and crystalline phases in Na-Doped SrSiO3 system, RSC Adv., 6, 20211, 10.1039/C5RA27442G
Jee, 2016, Phase relationship and ionic conductivity in Na–SrSiO3 ionic conductor, J. Am. Ceram. Soc., 99, 324, 10.1111/jace.13925
Inglis, 2016, Structure and sodium ion dynamics in sodium strontium silicate investigated by multinuclear solid state NMR, Chem. Mater, 28, 3850, 10.1021/acs.chemmater.6b00941
Mackenzie, 2002, Multinuclear solid-state NMR of inorganic materials, Pergamon Mater. Ser., 6
Ashbrook, 2014, New methods and applications in solid-state NMR spectroscopy of quadrupolar nuclei, J. Am. Chem. Soc., 136, 15440, 10.1021/ja504734p
Eden, 2012, NMR studies of oxide-based glasses, Annu. Rep. Prog. Chem. Sect. C. Phys. Chem., 108, 177, 10.1039/c2pc90006h
Massiot, 2002, Modelling one and two dimensional solid-state NMR spectra, Magn. Reson. Chem., 40, 70, 10.1002/mrc.984
Murdoch, 1985, High-resolution 29Si NMR study of silicate and aluminosilicate glasses: the effect of network-modifying cations, Am. Mineral., 70, 332
Heidemann, 1992, 29Si–Und 23Na–Festkörper-MAS-NMR-Untersuchungen an Modifikationen des Na2Si2O5, Z. Anorg. Allg. Chem., 617, 169, 10.1002/zaac.19926170129
Xue, 1993, 23Na NMR chemical shifts and local Na coordination environments in silicate crystals, melts and glasses, Phys. Chem. Min., 20, 297, 10.1007/BF00215100
Czjzek, 1981, Atomic coordination and the distribution of electric-field gradients in amorphous solids, Phys. Rev. B, 23, 2513, 10.1103/PhysRevB.23.2513
Neuville, 2004, Al environment in tectosilicate and peraluminous glasses: a 27Al MQ-MAS NMR, Raman, and XANES investigation, Geochim. Cosmochim. Acta, 68, 5071, 10.1016/j.gca.2004.05.048
Florian, 2007, 27Al NMR study of the structure of lanthunum- and yttrium-based aluminosilicate glasses and melts, J. Phys. Chem. B, 111, 9747, 10.1021/jp072061q
Pahari, 2012, Composition-property-structure correlations of scandium aluminosilicate glasses revealed by multinuclear 45Sc, 27Al, and 29Si solid-state NMR, J. Am. Ceram. Soc., 95, 2545, 10.1111/j.1551-2916.2012.05288.x
Iftekhar, 2012, Properties and structures of RE2O3–Al2O3–SiO2 (RE=Y, Lu) glasses probed by molecular dynamics simulations and solid-state NMR: the roles of aluminium and rare-earth ions for dictating the microhardness, J. Phys. Chem. C, 116, 18394, 10.1021/jp302672b
Koller, 1994, 23Na NMR spectroscopy of solids: interpretation of quadrupole interaction parameters and chemical shifts, J. Phys. Chem, 98, 1544, 10.1021/j100057a004
Frydman, 1995, Isotropic spectra of half-integer quadrupolar spins from Bidimensional magic-angle-spinning NMR, J. Am. Chem. Soc., 117, 5367, 10.1021/ja00124a023
Amoureux, 1996, Z filtering in MQMAS NMR, J. Magn. Reson. A, 123, 116, 10.1006/jmra.1996.0221
Hayashi, 2012, Superionic glass-ceramic electrolytes for room-temperarure rechargeable sodium Batteries, Nat. Commun., 3, 856, 10.1038/ncomms1843
Hayashi, 2014, High sodium ion conductivity of glass-ceramic electrolytes with cubic Na3PS4, J. Power Sources, 258, 420, 10.1016/j.jpowsour.2014.02.054
Kahlenberg, 1999, The crystal structure of δ-Na2Si2O5, J. Solid State Chem., 146, 380, 10.1006/jssc.1999.8365