Nghiên cứu NMR về các tính chất thermogelling, khuếch tán bất thường và sự thay đổi cấu trúc của copolymer triblock Pluronic F127 trong sự hiện diện của các hạt nano vàng

Springer Science and Business Media LLC - Tập 298 - Trang 1571-1585 - 2020
Jyotsana Ojha1, Raju Nanda2, Kavita Dorai1
1Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Manauli PO, India
2Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel

Tóm tắt

Chúng tôi đã nghiên cứu hiện tượng gel hóa nhiệt của copolymer triblock Pluronic F127 (poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide)) trong dung môi nước có sự hiện diện của các hạt nano vàng, sử dụng các kỹ thuật khuếch tán gradient trường xung, thí nghiệm NMR nhiệt độ, đo độ giãn nở và thí nghiệm NMR hai chiều heteronuclear. Khuếch tán gradient trường xung NMR là một kỹ thuật mạnh mẽ để nghiên cứu sự chuyển giao giữa các chế độ khuếch tán trong lưới polymer, bị điều chỉnh bởi các chuyển pha trong mạng polymer. Trong pha đồng nhất, độ khuếch tán của copolymer triblock là một quá trình Fickian cổ điển. Khi bắt đầu xảy ra quá trình gel hóa, độ khuếch tán trong hệ thống trở nên bất thường và sự dịch chuyển bình phương trung bình theo mũi của gradient trường từ tính cho thấy một phụ thuộc theo luật mũ. Các thí nghiệm của chúng tôi cho thấy rằng việc đưa vào các hạt nano vàng dẫn đến sự gián đoạn của quá trình gel hóa và sự chuyển dịch của sự hình thành pha có trật tự của copolymer triblock đến nhiệt độ cao hơn.

Từ khóa

#thermogelation #triblock copolymer #Pluronic F127 #gold nanoparticles #NMR #anomalous diffusion #structural changes

Tài liệu tham khảo

Alexandridis P, Hutton TA (1995) Poly(ethylene oxide)·poly(propylene oxide)·poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf A Physicochem Eng Asp 96:1–46 Bodratti A, Alexandridis P (2018). J Funct Biomater 9(1):11 Grund S, Bauer M, Fischer D (2011) Polymers in drug delivery-state of the art and future trends. Adv Eng Mater 13:B61–B87 Escobar-Chavez JJ, Lopez-Cervantes M, Naik A, Kalia Y, Guerrero DQ, Ganem Quintanar A (2006). J Pharm Pharm Sci 9(3):339 Rassing J, Mackenna W, Bandopadhyay S, Eyring E (1984). J Mol Liq 27:165 Ma Y, Zhang C, Chen X, Jiang H, Pan S, Easteal AJ, Sun X (2012) The influence of modified Pluronic F127 copolymers with higher phase transition temperature on arsenic trioxide-releasing properties and toxicity in a subcutaneous model of rats. AAPS PharmSciTech 13:441–447 Kabanov AV, Batrakova EV, Alakhov VY (2002) Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. J Control Release 82:189–212 Du J, Fan L, Liu Q (2012) pH-sensitive block copolymer vesicles with variable trigger points for drug delivery. Macromolecules 45:8275–8283 Arafa MG, El-Kased RF, Elmazar MM (2018) Thermoresponsive gels containing gold nanoparticles as smart antibacterial and wound healing agents. Sci Rep 8(1):13674 Walderhaug H, Sderman O (2009) NMR studies of block copolymer micelles. Curr Opin Colloid Interface Sci 14(3):171–177 Walderhaug H, Soderman O, Topgaard D (2010) Self-diffusion in polymer systems studied by magnetic field-gradient spin-echo NMR methods. Prog Nucl Magn Reson Spectrosc 56(4):406–425 Xu M, Xu M, Chen Q, Zhang S (2009). Colloid Polym Sci 288(1):85 Bakkour Y, Darcos V, Li S, Coudane J (2012) Diffusion ordered spectroscopy (DOSY) as a powerful tool for amphiphilic block copolymer characterization and for critical micelle concentration (CMC) determination. Polym Chem 3:2006 Barhoum S, Palit S, Yethiraj A (2016). Prog Nucl Magn Reson Spectrosc 94:1 Ulrich K, Galvosas P, Karger J, Grinberg F (2009) Effects of self-assembly on diffusion mechanisms of triblock copolymers in aqueous solution. Phys Rev Lett 102:037801 Matsukawa S, Ando I (1997) Study of self-diffusion of molecules in a polymer gel by pulsed-gradient spin-echo 1H NMR. 2. Intermolecular hydrogen-bond interaction between the probe polymer and network polymer in N,N-dimethylacrylamide−acrylic acid copolymer gel systems. Macromolecules 30:8310–8313 Ma JH, Guo C, Tang YL, Liu HZ (2007) 1H NMR spectroscopic investigations on the micellization and gelation of PEO−PPO−PEO block copolymers in aqueous solutions. Langmuir 23(19):9596–9605 Ma JH, Guo C, Tang YL, Wang J, Zheng L, Liang XF, Chen S, Liu HZ (2007) Salt-induced micellization of a triblock copolymer in aqueous solution: A1H nuclear magnetic resonance spectroscopy study. Langmuir 23(6):3075–3083 Abrahmsen-Alami S, Stilbs P (1994) 1H NMR self-diffusion and multifield 2H spin relaxation study of model associative polymer and sodium dodecyl sulfate aggregation in aqueous solution. J Phys Chem 98:6359–6367 Masaro L, Zhu XX (1999) Interaction of ethylene glycol with poly(vinyl alcohol) in aqueous systems as studied by NMR spectroscopy. Langmuir 15(24):8356–8360 Hansen EW, Olafsen K, Klaveness TM, Kvernberg PO (1998) Probing the gelation of polyvinylalcohol-water glutaraldehyde within a porous material by 1H n.m.r. — a preliminary investigation. Polymer 39:1279–1287 Walderhaug H, Nystrom B (1997) Anomalous diffusion in an aqueous system of a poly(ethylene oxide)−poly(propylene oxide)−poly(ethylene oxide) triblock copolymer during gelation studied by pulsed field gradient NMR. J Phys Chem B 101(9):1524–1528 Kumar BP, Priyadharsini SU, Prameela G, Mandal AB (2011) NMR investigations of self-aggregation characteristics of SDS in a model assembled tri-block copolymer solution. J Colloid Interface Sci 360:154–162 Nilsson M, Hakansson B, Soderman O, Topgaard D (2007) Influence of polydispersity on the micellization of triblock copolymers investigated by pulsed field gradient nuclear magnetic resonance. Macromolecules 40(23):8250–8258 Wei D, Ge L, Guo R (2018). Colloids Surf A Physicochem Eng Asp 553:1 Alivisatos AP (1996) Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100:13226–13239 Yeo SY, Lee HJ, Jeon SH (2003). J Mater Sci 38:2143–2147 Balan L, Malval JP, Schneider R, Burget D (2007) Silver nanoparticles: new synthesis, characterization and photophysical properties. Mater Chem Phys 104:417–421 Coelho SC, Rangel M, Pereira MC, Coelho MAN, Ivanova G (2015) Structural characterization of functionalized gold nanoparticles for drug delivery in cancer therapy: a NMR based approach. Phys Chem Chem Phys 17:18971–18979 Lin J, Zhang H, Chen Z, Zheng Y (2010). ACS Nano 4(9):5421 Kerkhofs S, Willhammar T, Noortgate HVD, Kirschhock CEA, Breynaert E, Tendeloo GV, Bals S, Martens JA (2015) Self-assembly of Pluronic F127—silica spherical core–shell nanoparticles in cubic close-packed structures. Chem Mater 27(15):5161–5169 Biswas S, Belfield KD, Das RK, Ghosh S, Hebard AF (2009) Block copolymer-mediated formation of superparamagnetic nanocomposites. Chem Mater 21(23):5644–5653 Bothun G (2008) Hydrophobic silver nanoparticles trapped in lipid bilayers: size distribution, bilayer phase behavior, and optical properties. J Nanobiotechnol 6:13 Ramalho JPP, Gkeka P, Sarkisov L (2011) Structure and phase transformations of dppc lipid bilayers in the presence of nanoparticles: insights from coarse-grained molecular dynamics simulations. Langmuir 27(7):3723–3730 Satarkar NS, Hilt JZ (2008) Magnetic hydrogel nanocomposites for remote controlled pulsatile drug release. J Control Release 130(3):246–251 Balazs AC, Emrick T, Russell TP (2006) Nanoparticle polymer composites: where two small worlds meet. Science 314:1107–1110 Lin Y, Boker A, He J, Sill K, Xiang H, Abetz C, Li X, Wang J, Emrick T, Long S, Wang Q, Balazs A, Russell TP (2005) Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434:55–59 Cai LH, Panyukov S, Rubinstein M (2015) Hopping diffusion of nanoparticles in polymer matrices. Macromolecules 48:847–862 Sabir TS, Yan D, Milligan JR, Aruni AW, Nick KE, Ramon RH, Hughes JA, Chen Q, Kurti RS, Perry CC (2012) Kinetics of gold nanoparticle formation facilitated by triblock copolymers. J Phys Chem C 116:4431–4441 Sidorov SN, Bronstein LM, Valetsky PM, Hartmann J, Colfen H, Schnablegger H, Antonietti M (1999) Stabilization of metal nanoparticles in aqueous medium by polyethyleneoxide–polyethyleneimine block copolymers. J Colloid Interface Sci 212:197–211 Goncalves LC, Seabra AB, Pelegrino MT, de Araujo DR, Bernardes JS, Haddad PS (2017) Superparamagnetic iron oxide nanoparticles dispersed in Pluronic F127 hydrogel: potential uses in topical applications. RSC Adv 7:14496–14503 Sun K, Raghavan SR (2010) Thermogelling aqueous fluids containing low concentrations of Pluronic F127 and laponite nanoparticles. Langmuir 26:8015–8020 Diniz IMA, Chen C, Xu X, Ansari S, Zadeh HH, Marques MM, Shi S, Moshaverinia A (2015) Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. J Mater Sci Mater Med 26:153 Gao Q, Liang Q, Yu F, Xu J, Zhao Q, Sun B (2011) Synthesis and characterization of novel amphiphilic copolymer stearic acid-coupled F127 nanoparticles for nano-technology based drug delivery system. Colloids Surf B: Biointerfaces 88:741–748 Li J, Marmorat C, Vasilyev G, Jiang J, Koifman N, Guo Y, Talmon I, Zussman E, Gersappe D, Davis R, Rafailovich M (2019) Flow induced stability of Pluronic hydrogels: injectable and unencapsulated nucleus pulposus replacement. Acta Biomater 96:295–302 Satarkar NS, Biswal D, Hilt JZ (2010) Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter 6(11):2364 Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287(1):1–11 Monz S, Tschope A, Birringer R (2008) Magnetic properties of isotropic and anisotropicCoFe2O4-based ferrogels and their application as torsional and rotational actuators. Phys Rev E 78:021404 Ghosh S, Yang C, Cai T, Hu Z, Neogi A (2009) Oscillating magnetic field-actuated microvalves for micro- and nanofluidics. J Phys D Appl Phys 42:135501 de Kort DW, van Duynhoven JPM, van As H, Mariette F (2015) Nanoparticle diffusometry for quantitative assessment of submicron structure in food biopolymer networks. Trends Food Sci Technol 42:13–26 Nambam JS, Philip J (2012) Thermogelling properties of triblock copolymers in the presence of hydrophilic Fe3O4 nanoparticles and surfactants. Langmuir 28:12044–12053 Boucenna L, Royon L, Colinart P, Boudeville MAG, Mourchid A (2010) Structure and thermorheology of concentrated pluronic copolymer micelles in the presence of laponite particles. Langmuir 26:14430–14436 Pozzo DC, Walker LM (2005) Three-Dimensional Nanoparticle Arrays Templated by Self-Assembled Block-Copolymer Gels. Macromol Symp 227:203–210 Castelletto V, Ansari IA, Hamley IW (2003) Influence of added clay particles on the structure and rheology of a hexagonal phase formed by an amphiphilic block copolymer in aqueous solution. Macromolecules 36:1694–1700 Lungova M, Krutyeva M, Pyckhout-Hintzen W, Wischnewski A, Monkenbusch M, Allgaier J, Ohl M, Sharp M, Richter D (2016) Nanoscale motion of soft nanoparticles in unentangled and entangled polymer matrices. Phys Rev Lett 117:147803 Fernandes RMF, Buzaglo M, Shtein M, Bar IP, Regev O, Marques EF, Furo I (2014) Lateral diffusion of dispersing molecules on nanotubes as probed by NMR. J Phys Chem C 118:582–589 Angelescu DG, Vasilescu M, Anastasescu M, Baratoiu R, Donescu D, Teodorescu VS (2012) Synthesis and association of Ag(0) nanoparticles in aqueous Pluronic F127 triblock copolymer solutions. Colloids Surf A Physicochem Eng Asp 394:57–66 Chiu JJ, Kim BJ, Kramer EJ, Pine DJ (2005) Control of Nanoparticle Location in Block Copolymers. J Am Chem Soc 127:5036–5037 Stejskal EO, Tanner JE (1965) Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 42(1):288–292 Soong R, Nieh MP, Nicholson E, Katsaras J, Macdonald PM (2010) Bicellar mixtures containing Pluronic F68: morphology and lateral diffusion from combined SANS and PFG NMR studies. Langmuir 26:2630–2638 Nystrom B, Walderhaug H, Hansen FK (1993) Dynamic crossover effects observed in solutions of a hydrophobically associating water-soluble polymer. J Phys Chem 97(29):7743–7752 Fleischer G, Sillescu H, Skirda VD (1994) Molecular motion in concentrated solutions of spherical polystyrene microgels studied with the pulsed field gradient n.m.r. Polymer 35:1936–1941 Wanka G, Hoffmann H, Ulbricht W (1994) Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 27(15):4145–4159 Malmsten M, Lindman B (1992) Self-assembly in aqueous block copolymer solutions. Macromolecules 25(20):5440–5445 Okamura E, Yoshii N (2008). J Chem Phys 129(21):12B602 Kim TH, Kim E, Do C, Ahn H, Lee H, Han Y (2016) Anomalistic self-assembled phase behavior of block copolymer blended with organic derivative depending on temperature. Macromolecules 49(17):6541–6548 Alexandridis P, Holzwarth JF, Hatton TA (1994). Macromolecules 27(9):2414 Nivaggioli T, Tsao B, Alexandridis P, Hatton TA (1995) Microviscosity in Pluronic and tetronic poly(ethylene oxide)-poly(propylene oxide) block copolymer micelles. Langmuir 11(1):119–126 Li L, Lim LH, Wang Q, Jiang SP (2008) Thermoreversible micellization and gelation of a blend of Pluronic polymers. Polymer 49(7):1952–1960 Mortensen K, Talmon Y (1995) Cryo-TEM and SANS Microstructural Study of Pluronic Polymer Solutions. Macromolecules 28:8829–8834 Yu C, Yu Y, Zhao D (2000). Chem Commun 2000:575 Xiong XY, Tam KC, Gan LH (2003) Synthesis and aggregation behavior of Pluronic F127/poly(lactic acid) block copolymers in aqueous solutions. Macromolecules 36:9979–9985 Basak R, Bandyopadhyay R (2013) Encapsulation of hydrophobic drugs in Pluronic F127 micelles: effects of drug hydrophobicity, solution temperature, and pH. Langmuir 29:4350–4356 Pragatheeswaran AM, Chen SB (2013) Effect of chain length of PEO on the gelation and micellization of the Pluronic F127 copolymer aqueous system. Langmuir 29:9694–9701 Li G, Hao J, Li H, Fan D, Sui W (2015) Determination of the critical micellar temperature of F127 aqueous solutions at the presence of sodium bromide by cyclic voltammetry. Colloid Polym Sci 293:787–796 Pragatheeswaran AM, Chen SB, Chen CF, Chen BH (2014) Micellization and gelation of PEO-PPO-PEO binary mixture with non-identical PPO block lengths in aqueous solution. Polymer 55:5284–5291 Ma J, Guo C, Tang Y, Xiang J, Chen S, Wang J, Liu H (2007) Micellization in aqueous solution of an ethylene oxide–propylene oxide triblock copolymer, investigated with 1H NMR spectroscopy, pulsed-field gradient NMR, and NMR relaxation. J Colloid Interface Sci 312(2):390–396 Fraenza CC, Mattea C, Farrher GD, Ordikhani-Seyedlar A, Stapf S, Anoardo E (2018) Rouse dynamics in PEO-PPO-PEO block-copolymers in aqueous solution as observed through fast field-cycling NMR relaxometry. Polymer 150:244–253 Yardimci H, Chung B, Harden J, Leheny R (2005) Phase behavior and local dynamics of concentrated triblock copolymer micelles. J Chem Phys 123:244908 Ma JH, Guo C, Tang YL, Liu HZ (2007). Langmuir 23(19):9596 PMID: 17655339 Wada H, Kitazawa Y, Kuroki S, Tezuka Y, Yamamoto T (2015) NMR relaxometry for the thermal stability and phase transition mechanism of flower-like micelles from linear and cyclic amphiphilic block copolymers. Langmuir 31(32):8739–8744 Prameela GKS, Kumar BVNP, Aswal VK, Mandal AB (2013) Influence of water-insoluble nonionic copolymer E6P39E6 on the microstructure and self-aggregation dynamics of aqueous SDS solution—NMR and SANS investigations. Phys Chem Chem Phys 15:17577–17586 Cosgrove T, Rodin V, Murray M, Buscall R (2007) Self-diffusion in solutions of carboxylated acrylic polymers as studied by pulsed field gradient NMR. 2. Diffusion of macromolecules. J Polym Res 14(3):175–180 Jee AY, Curtis-Fisk JL, Granick S (2014) Nanoparticle diffusion in methycellulose thermoreversible association polymer. Macromolecules 47:5793–5797 Scheller H, Fleischer G, Karger J (1997) Restricted self-diffusion in an aqueous solution of poly(ethylene oxide) poly(propylene oxide) poly(ethylene oxide) triblock copolymer. Colloid Polym Sci 275:730–735 Li Y, Shi T, Sun Z, An L, Huang Q (2006) Investigation of sol−gel transition in Pluronic F127/D2O solutions using a combination of small-angle neutron scattering and Monte Carlo simulation. J Phys Chem B 110(51):26424–26429 Agrawal SK, Sanabria-DeLong N, Tew GN, Bhatia SR (2008) Nanoparticle-reinforced associative network hydrogels. Langmuir 24:13148–13154 Pragatheeswaran AM, Chen SB (2016) The influence of poly(acrylic acid) on micellization and gelation characteristics of aqueous Pluronic F127 copolymer system. Colloid Polym Sci 294:107–117 Sarkar B, Alexandridis P (2015). Prog Polym Sci 40:33 Gaines MK, Smith SD, Samseth J, Bockstaller MR, Thompson RB, Rasmussen KO, Spontak RJ (2008) Nanoparticle-regulated phase behavior of ordered block copolymers. Soft Matter 4:1609 Gioffredi E, Boffito M, Calzone S, Giannitelli SM, Rainer A, Trombetta M, Mozetic P, Chiono V (2016) Pluronic F127 hydrogel characterization and biofabrication in cellularized constructs for tissue engineering applications. Procedia CIRP 49:125–132 Jiang J, Malal R, Li C, Lin MY, Colby RH, Gersappe D, Rafailovich MH, Sokolov JC, Cohn D (2008) Rheology of thermoreversible hydrogels from multiblock associating copolymers. Macromolecules 41:3646–3652 Suherman AL, Zampardi G, Amin HMA, Young NP, Compton RG (2019) Tannic acid capped gold nanoparticles: capping agent chemistry controls the redox activity. Phys Chem Chem Phys 21:4444–4451 Ranoszek-Soliwoda K, Omaszewska T, Socha E, Krzyczmonik P, Ignaczak A, Orlowski P, Krzyzowska M, Celichowsk G, Grobelny J (2017). J Nanopart Res 19(8):273