NMR assignments of actin depolymerizing factor (ADF) like UNC-60A and cofilin like UNC-60B proteins of Caenorhabditis elegans
Tóm tắt
The actin filament dynamics in nematode, Caenorhabditis elegans, is regulated by differential activity of two proteins UNC-60A and UNC-60B. UNC-60A exhibits strong pointed end depolymerization on C. elegans actin (Ce-actin), strong inhibition of polymerization, strong monomer sequestering activity, weak severing activity, and low affinity for F-actin binding, while UNC-60B exhibits strong pointed end depolymerization on rabbit muscle actin, strong severing activity, and high affinity for F-actin binding. Structural characterization of these proteins will help to understand (1) molecular mechanism of actin dynamics regulation and (2) the differential activity of these proteins. Here, we report 1H, 13C, and 15N chemical shift assignments of these two proteins as determined by heteronuclear NMR experiments (at pH 6.5 and temperature 298 K).
Tài liệu tham khảo
Alfano C, Babon J, Kelly G, Curry S, Conte MR (2003) Resonance assignment and secondary structure of an N-terminal fragment of the human La protein. J Biomol NMR 27:93–94
Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302
Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293
Keller R (2004) The computer aided resonance assignment tutorial CANTINA. Verlag, Goldau
Ono S (2007) Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. Int Rev Cytol 258:1–82
Ono S, Benian GM (1998) Two Caenorhabditis elegans actin depolymerizing factor/cofilin proteins, encoded by the unc-60 gene, differentially regulate actin filament dynamics. J Biol Chem 273:3778–3783
Ono S, Baillie DL, Benian GM (1999) UNC-60B, an ADF/cofilin family protein, is required for proper assembly of actin into myofibrils in Caenorhabditis elegans body wall muscle. J Cell Biol 145:491–502
Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44:213–223
Yamashiro S, Mohri K, Ono S (2005) The two Caenorhabditis elegans actin-depolymerizing factor/cofilin proteins differently enhance actin filament severing and depolymerization. Biochemistry 44:14238–14247