NLRP3 inflammasome trong bạch cầu đơn nhân huyết ngoại vi như một yếu tố nguy cơ gây tiền sản giật khởi phát sớm

Springer Science and Business Media LLC - Tập 23 - Trang 1-8 - 2023
Hong Yang1, Mo Ai1, Yanqiu Guo1, Bingfen Li1, Cong Liu1, Dongying Qu1
1Department of Gynaecology and Obstetrics, The General Hospital of Northern Theater Command, Shenyang City, China

Tóm tắt

Là một trong những nguyên nhân hàng đầu gây tử vong trong thai kỳ và thai nhi, tiền sản giật ảnh hưởng đến khoảng 5–8% các trường hợp mang thai trên toàn cầu. Đến nay, có rất ít nghiên cứu tập trung vào vai trò của protein thụ thể giống (NOD)-NLRP3 trong máu ngoại vi đối với tiền sản giật khởi phát sớm. Trong nghiên cứu này, chúng tôi đã kiểm tra xem sự biểu hiện của NLRP3 trong bạch cầu đơn nhân trước tuần thứ 20 của thai kỳ có liên quan đến nguy cơ gia tăng đến tiền sản giật khởi phát sớm hay không. Trong khoảng thời gian từ năm 2019 đến 2021, những phụ nữ mang thai đơn phát đã được tuyển chọn tham gia vào nghiên cứu tiềm năng này tại Bệnh viện Đa khoa của Bộ Tư lệnh Quân khu phía Bắc. Một mô hình tổng hợp đại số (GAM) và các mô hình hồi quy logistic đã được áp dụng để xác định bất kỳ mối liên hệ nào giữa NLRP3 và nguy cơ mắc tiền sản giật khởi phát sớm. Tổng cộng, 571 và 48 đối tượng đã tham gia vào nhóm chứng và nhóm tiền sản giật, tương ứng. Các mô hình GAM và hồi quy logistic cho thấy NLRP3 là một yếu tố quan trọng đối với sự xuất hiện của tiền sản giật. Khu vực dưới đường cong, độ chính xác, độ đặc hiệu, độ nhạy, tỷ lệ khả năng dương tính, tỷ lệ khả năng âm tính và tỷ lệ chẩn đoán đều là 0.86, 0.82, 0.95, 0.72, 15.17, 0.29 và 52.0, tương ứng. Việc theo dõi NLRP3 trong máu ngoại vi có thể là một yếu tố dự đoán tiềm năng cho việc xác định nguy cơ tiền sản giật.

Từ khóa

#tiền sản giật khởi phát sớm #NLRP3 #bạch cầu đơn nhân huyết ngoại vi #yếu tố nguy cơ #nghiên cứu tiềm năng

Tài liệu tham khảo

Chaemsaithong P, Sahota DS, Poon LC. First trimester preeclampsia screening and prediction. Am J Obstet Gynecol. 2020. https://doi.org/10.1016/j.ajog.2020.07.020. Kaya S, Kaya B. Evaluation of fetal renal artery doppler indices in pregnancies complicated with preeclampsia. Gynecol Obstet Invest. 2021:1–7. https://doi.org/10.1159/000519954. Oğlak SC, Tunç Ş, Ölmez F. First trimester mean platelet volume, neutrophil to lymphocyte ratio, and platelet to lymphocyte ratio values are useful markers for predicting preeclampsia. Ochsner J. 2021;21(4):364–70. https://doi.org/10.31486/toj.21.0026. Behram M, Oğlak SC, Doğan Y. Evaluation of brd4 levels in patients with early-onset preeclampsia. J Gynecol Obstet Hum Reprod. 2021;50(2):101963. https://doi.org/10.1016/j.jogoh.2020.101963. Grotegut CA. Prevention of preeclampsia. J Clin Invest. 2016;126(12):4396–8. https://doi.org/10.1172/jci91300. Michalczyk M, Celewicz A, Celewicz M, Woźniakowska-Gondek P, Rzepka R. The role of inflammation in the pathogenesis of preeclampsia. Mediators Inflamm. 2020;2020:3864941. https://doi.org/10.1155/2020/3864941. El Shahaway AA, Abd Elhady RR, Abdelrhman AA, Yahia S. Role of maternal serum interleukin 17 in preeclampsia: diagnosis and prognosis. J Inflamm Res. 2019;12:175–80. https://doi.org/10.2147/jir.s206800. Trisnawati E, Nontji W, Nurasni S. Tumour necrosis factor-α (tnf-α) serum levels in preeclampsia pregnant women and pregnant women at risk with preeclampsia. Enferm Clin. 2020;30(Suppl 2):27–30. https://doi.org/10.1016/j.enfcli.2019.07.021. Guney G, Taskin MI, Tokmak A. Increase of circulating inflammatory molecules in preeclampsia, an update. Eur Cytokine Netw. 2020;31(1):18–31. https://doi.org/10.1684/ecn.2020.0443. Molina Pérez CJ, Nolasco Leaños AG, Carrillo Juárez RI, Berumen Lechuga MG, Isordia Salas I, Leaños Miranda A. Soluble endoglin and uterine artery flow doppler ultrasonography as markers of progression to preeclampsia in women with gestational hypertension. Gynecol Obstet Invest. 2021;86(5):445–53. https://doi.org/10.1159/000519371. Liu L, Zheng B, Jiang Z, Wu S, Jin Q, Lin P, Lin Z, Wang L. Association of elevated cord blood oxidative stress biomarkers with neonatal outcomes in mothers with pre-eclampsia: a case-control study. Gynecol Obstet Invest. 2021;86(4):361–9. https://doi.org/10.1159/000517996. Hamadeh R, Mohsen A, Kobeissy F, Karouni A, Akoum H. C-reactive protein for prediction or early detection of pre-eclampsia: a systematic review. Gynecol Obstet Invest. 2021;86(1–2):13–26. https://doi.org/10.1159/000515530. Liu J, Zhao G, Xie J, Wu S, Li B, Yao J. There is a strong association between early preeclampsia and congenital heart defects: a large population-based, retrospective study. Gynecol Obstet Invest. 2021;86(1–2):40–7. https://doi.org/10.1159/000506804. Zhou J, Zhang D, Bai J, Li Z, Chen Y. Altered expressions of aqp3 and adp are closely related with the risk of preeclampsia occurrence. Gynecol Obstet Invest. 2020;85(4):362–70. https://doi.org/10.1159/000509161. Severens-Rijvers CAH, Al-Nasiry S, Vincken A, Haenen G, Winkens B, Ghossein-Doha C, Spaanderman MAE, Peeters LLH. Early-pregnancy circulating antioxidant capacity and hemodynamic adaptation in recurrent placental syndrome: an exploratory study. Gynecol Obstet Invest. 2019;84(6):616–22. https://doi.org/10.1159/000501254. Mazaheri-Tehrani E, Mohraz M, Nasi M, Chester J, De Gaetano A, Lo Tartaro D, SeyedAlinaghi S, Gholami M, De Biasi S, Gibellini L, Mattioli AV, Pinti M, Mussini C, Cossarizza A. Nlrp3 and il-1β gene expression is elevated in monocytes from hiv-treated patients with neurocognitive disorders. J Acquir Immune Defic Syndr. 2021;86(4):496–9. https://doi.org/10.1097/qai.0000000000002588. Socha MW, Malinowski B, Puk O, Dubiel M, Wiciński M. The nlrp3 inflammasome role in the pathogenesis of pregnancy induced hypertension and preeclampsia. Cells. 2020;9(7):1642. https://doi.org/10.3390/cells9071642. Well IC, Romão-Veiga M, Matias ML, Fioratti EG, Peraçoli JC, Borges VT, Araujo JP Jr, Peraçoli MT. Increased expression of nlrp3 inflammasome in placentas from pregnant women with severe preeclampsia. J Reprod Immunol. 2017;123:40–7. https://doi.org/10.1016/j.jri.2017.09.002. Shirasuna K, Karasawa T, Takahashi M. Role of the nlrp3 inflammasome in preeclampsia. Front Endocrinol (Lausanne). 2020;11:80. https://doi.org/10.3389/fendo.2020.00080. Xu L, Li S, Liu Z, Jiang S, Wang J, Guo M, Zhao X, Song W, Liu S. The nlrp3 rs10754558 polymorphism is a risk factor for preeclampsia in a chinese han population. J Matern Fetal Neonatal Med. 2019;32(11):1792–9. https://doi.org/10.1080/14767058.2017.1418313. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The strengthening the reporting of observational studies in epidemiology (strobe) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147(8):573–7. https://doi.org/10.7326/0003-4819-147-8-200710160-00010. Khan N, Andrade W, de Castro H, Wright A, Wright D, Nicolaides KH. Impact of the new definition of pre-eclampsia on the incidence and performance of first-trimester screening for the disease. Ultrasound Obstet Gynecol. 2019. https://doi.org/10.1002/uog.21867. Li J, Wang B, Cai A, Yuan Q, Ding H, Zhao D. Carotid arterial wall stiffness correlates positively with impedance of the umbilical and uterine arteries in women with preeclampsia. J Clin Ultrasound. 2019;47(1):27–35. https://doi.org/10.1002/jcu.22648. Valencia-Ortega J, Zárate A, Saucedo R, Hernández-Valencia M, Cruz JG, Puello E. Placental proinflammatory state and maternal endothelial dysfunction in preeclampsia. Gynecol Obstet Invest. 2019;84(1):12–9. https://doi.org/10.1159/000491087. Tian H, Li G, Xu G, Liu J, Wan X, Zhang J, Xie S, Cheng J, Gao S. Inflammatory cytokines derived from peripheral blood contribute to the modified electroconvulsive therapy-induced cognitive deficits in major depressive disorder. Eur Arch Psychiatry Clin Neurosci. 2020. https://doi.org/10.1007/s00406-020-01128-9. Žák P, Souček M. Correlation of tumor necrosis factor alpha, interleukin 6 and interleukin 10 with blood pressure, risk of preeclampsia and low birth weight in gestational diabetes. Physiol Res. 2019;68(3):395–408. https://doi.org/10.33549/physiolres.934002. Mosimann B, Pfiffner C, Amylidi-Mohr S, Risch L, Surbek D, Raio L. First trimester combined screening for preeclampsia and small for gestational age - a single centre experience and validation of the fmf screening algorithm. Swiss Med Wkly. 2017;147:w14498. https://doi.org/10.4414/smw.2017.14498. Sunjaya AF, Sunjaya AP. Evaluation of serum biomarkers and other diagnostic modalities for early diagnosis of preeclampsia. J Family Reprod Health. 2019;13(2):56–69. Wang XL. Effect of il-15-mediating ifn-γ on htr-8/svneo cells and a preeclampsia mouse model induced by lipopolysaccharides. Gynecol Obstet Invest. 2021;86(3):247–56. https://doi.org/10.1159/000513401. Ölmez F, Oğlak SC, Gedik Özköse Z. Increased maternal serum aquaporin-9 expression in pregnancies complicated with early-onset preeclampsia. J Obstet Gynaecol Res. 2022;48(3):647–53. https://doi.org/10.1111/jog.15129. Agrawal S, Parks WT, Zeng HD, Ravichandran A, Ashwal E, Windrim RC, Hobson SR, Melamed N, Kingdom JC. Diagnostic utility of serial circulating placental growth factor levels and uterine artery doppler waveforms in diagnosing underlying placental diseases in pregnancies at high risk of placental dysfunction. Am J Obstet Gynecol. 2022;227(4):618 e611-618 e616. https://doi.org/10.1016/j.ajog.2022.05.043. Sakcak B, Turgut E, Denizli R, Farisogullari N, Tanacan A, Yazihan N, Sahin D. Comparison of serum midkine levels between pregnant women with and without pre-eclampsia: A case-control study from a tertiary hospital. Int J Gynaecol Obstet. 2023. https://doi.org/10.1002/ijgo.14677. Beksac MS, Tanacan A, Ozten G, Cakar AN. Low-dose low-molecular-weight heparin prophylaxis against obstetrical complications in pregnancies with metabolic and immunological disorder-associated placental inflammation. J Matern Fetal Neonatal Med. 2022;35(8):1546–53. https://doi.org/10.1080/14767058.2020.1760834. Lee S, Shin J, Kim JS, Shin J, Lee SK, Park HW. Targeting tbk1 attenuates lps-induced nlrp3 inflammasome activation by regulating of mtorc1 pathways in trophoblasts. Front Immunol. 2021;2021(12):743700. https://doi.org/10.3389/fimmu.2021.743700. Park JY, Jo SG, Lee HN, Choi JH, Lee YJ, Kim YM, Cho JY, Lee SK, Park JH. Tendril extract of cucurbita moschata suppresses nlrp3 inflammasome activation in murine macrophages and human trophoblast cells. Int J Med Sci. 2020;17(8):1006–14. https://doi.org/10.7150/ijms.39003. Mauro AK, Khurshid N, Berdahl DM, Ampey AC, Adu D, Shah DM, Boeldt DS. Cytokine concentrations direct endothelial function in pregnancy and preeclampsia. J Endocrinol. 2021;248(2):107–17. https://doi.org/10.1530/joe-20-0397. Park S, Shin J, Bae J, Han D, Park SR, Shin J, Lee SK, Park HW. Sirt1 alleviates lps-induced il-1β production by suppressing nlrp3 inflammasome activation and ros production in trophoblasts. Cells. 2020;9(3):728. https://doi.org/10.3390/cells9030728. Xie F, Hu Y, Turvey SE, Magee LA, Brunham RM, Choi KC, Krajden M, Leung PC, Money DM, Patrick DM, Thomas E, von Dadelszen P. Toll-like receptors 2 and 4 and the cryopyrin inflammasome in normal pregnancy and pre-eclampsia. BJOG. 2010;117(1):99–108. https://doi.org/10.1111/j.1471-0528.2009.02428.x. Qi HM, Cao Q, Liu Q. Tlr4 regulates vascular smooth muscle cell proliferation in hypertension via modulation of the nlrp3 inflammasome. Am J Transl Res. 2021;13(1):314–25. Wei T, Gao J, Huang C, Song B, Sun M, Shen W. Sirt3 (sirtuin-3) prevents ang ii (angiotensin ii)-induced macrophage metabolic switch improving perivascular adipose tissue function. Arterioscler Thromb Vasc Biol. 2020:ATVBAHA120315337. https://doi.org/10.1161/atvbaha.120.315337. Chen Z, Wu C, Liu Y, Li H, Zhu Y, Huang C, Lin H, Qiao Q, Huang M, Zhu Q, Wang L. Elabela attenuates deoxycorticosterone acetate/salt-induced hypertension and renal injury by inhibition of nadph oxidase/ros/nlrp3 inflammasome pathway. Cell Death Dis. 2020;11(8):698. https://doi.org/10.1038/s41419-020-02912-0. Cero FT, Hillestad V, Sjaastad I, Yndestad A, Aukrust P, Ranheim T, Lunde IG, Olsen MB, Lien E, Zhang L, Haugstad SB, Løberg EM, Christensen G, Larsen KO, Skjønsberg OH. Absence of the inflammasome adaptor asc reduces hypoxia-induced pulmonary hypertension in mice. Am J Physiol Lung Cell Mol Physiol. 2015;309(4):L378-387. https://doi.org/10.1152/ajplung.00342.2014. Ozeki A, Oogaki Y, Henmi Y, Karasawa T, Takahashi M, Takahashi H, Ohkuchi A, Shirasuna K. Elevated s100a9 in preeclampsia induces soluble endoglin and il-1β secretion and hypertension via the nlrp3 inflammasome. J Hypertens. 2022;40(1):84–93. https://doi.org/10.1097/hjh.0000000000002981. Zeng H, Han X, Zhu Z, Yu S, Mei S, Cheng X, Zhang W, Zhang G, Fang D. Increased uterine nlrp3 inflammasome and leucocyte infiltration in a rat model of preeclampsia. Am J Reprod Immunol. 2021;86(6):e13493. https://doi.org/10.1111/aji.13493. Matias ML, Gomes VJ, Romao-Veiga M, Ribeiro VR, Nunes PR, Romagnoli GG, Peracoli JC, Peracoli MTS. Silibinin downregulates the nf-κb pathway and nlrp1/nlrp3 inflammasomes in monocytes from pregnant women with preeclampsia. Molecules. 2019;24(8):1548. https://doi.org/10.3390/molecules24081548.