Con đường phụ thuộc vào NLRP3 inflammasome có liên quan đến bệnh sinh của hội chứng buồng trứng đa nang

Reproductive Sciences - Trang 1-11 - 2023
Bo Wang1, Minfeng Shi2, Chuanjin Yu3, Hong Pan4, Haiqing Shen4, Yatao Du5, Yi Zhang1, Bin Liu1, Di Xi1, Jianzhong Sheng6,7, Hefeng Huang3,8,6, Guolian Ding3,8
1Department of Reproductive Medicine, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
2Shanghai Changhai Hospital, Shanghai, China
3Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
4School of Medicine, International Peace Maternity and Child Health Hospital, Shanghai Jiaotong University, Shanghai, China
5Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
6Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
7School of Medicine, The Fourth Affiliated Hospital of Zhejiang University, Yiwu, China
8Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China

Tóm tắt

Bằng chứng tích lũy đã chỉ ra rằng viêm là một quá trình chính trong hội chứng buồng trứng đa nang (PCOS). Các inflammasome chứa nucleotide-binding oligomerization domain, leucine-rich repeat và pyrin domain-3 (NLRP3) đóng vai trò cốt yếu trong quá trình viêm. Chúng tôi đã nghiên cứu sự biểu hiện của inflammasome NLRP3 trong PCOS và các cơ chế tiềm ẩn của nó. Các tế bào granulosa (GCs) của con người đã được tách ra từ bệnh nhân PCOS và phụ nữ trong nhóm đối chứng trải qua thụ tinh in vitro và chuyển phôi. Mẫu mô buồng trứng được thu thập từ chuột có các thay đổi buồng trứng đa nang do chế độ ăn giàu chất béo và thuốc letrozole gây ra. Phân tích chuỗi RNA (RNA-Seq) đã được thực hiện trên một dòng tế bào granulosa (KGN) biểu hiện quá mức NLRP3. Phản ứng chuỗi polymerase (PCR) đã được thực hiện để định lượng các gen biểu hiện khác nhau có liên quan. Sự biểu hiện của NLRP3 và caspase-1 cao hơn đáng kể trong GCs của bệnh nhân PCOS so với GCs của nhóm đối chứng. Sự biểu hiện tăng cường của NLRP3 và caspase-1 cũng được phát hiện bằng phương pháp miễn dịch hoá mô học trong GCs của một mô hình chuột bị thay đổi buồng trứng đa nang. Nồng độ IL-18 trong huyết thanh của chuột giống như PCOS cao hơn đáng kể so với chuột đối chứng. Sau khi biểu hiện quá mức NLRP3 trong các tế bào KGN, các gen liên quan đến quá trình xử lý N-glycan, steroidogenesis, chín trứng, tự thực bào và quá trình tự chết tế bào đã được tăng cường. Kết quả RT-qPCR cho thấy rằng mức độ biểu hiện của GANAB, ALG-5, HSD3B2, ULK1, PTK2B và Casp7 trong các tế bào KGN sau khi biểu hiện quá mức NLRP3 cao hơn đáng kể so với các tế bào đối chứng, điều này nhất quán với kết quả RNA-Seq. Tổng hợp lại, con đường phụ thuộc vào inflammasome NLRP3 tham gia vào bệnh sinh của PCOS không chỉ bằng cách trung gian hóa học pyroptosis mà còn bằng cách điều chỉnh tổng hợp glycan, tổng hợp hormone giới tính, tự thực bào và quá trình tự chết tế bào trong các tế bào GCs.

Từ khóa

#PCOS #NLRP3 inflammasome #viêm #tự thực bào #hormone giới tính

Tài liệu tham khảo

Barrea L, Marzullo P, Muscogiuri G, Di Somma C, Scacchi M, Orio F, et al. Source and amount of carbohydrate in the diet and inflammation in women with polycystic ovary syndrome. Nutr Res Rev. 2018;31(2):291–301. https://doi.org/10.1017/S0954422418000136. Lai Q, Xiang W, Li Q, Zhang H, Li Y, Zhu G, et al. Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome. Front Med. 2018;12(5):518–24. https://doi.org/10.1007/s11684-017-0575-y. Gonzalez F, Considine RV, Abdelhadi OA, Acton AJ. Oxidative Stress in Response to Saturated Fat Ingestion Is Linked to Insulin Resistance and Hyperandrogenism in Polycystic Ovary Syndrome. J Clin Endocrinol Metab. 2019;104(11):5360–71. https://doi.org/10.1210/jc.2019-00987. Mohammadi M. Oxidative Stress and Polycystic Ovary Syndrome: A Brief Review. Int J Prev Med. 2019;10:86. https://doi.org/10.4103/ijpvm.IJPVM_576_17. Liu Y, Liu H, Li Z, Fan H, Yan X, Liu X, et al. The Release of Peripheral Immune Inflammatory Cytokines Promote an Inflammatory Cascade in PCOS Patients via Altering the Follicular Microenvironment. Front Immunol. 2021;12:685724. https://doi.org/10.3389/fimmu.2021.685724. Jung ES, Suh K, Han J, Kim H, Kang HS, Choi WS, et al. Amyloid-beta activates NLRP3 inflammasomes by affecting microglial immunometabolism through the Syk-AMPK pathway. Aging Cell. 2022;21(5):e13623. https://doi.org/10.1111/acel.13623. Yao C, Veleva T, Scott L Jr, Cao S, Li L, Chen G, et al. Enhanced Cardiomyocyte NLRP3 Inflammasome Signaling Promotes Atrial Fibrillation. Circulation. 2018;138(20):2227–42. https://doi.org/10.1161/CIRCULATIONAHA.118.035202. Williams BM, Cliff CL, Lee K, Squires PE, Hills CE. The Role of the NLRP3 Inflammasome in Mediating Glomerular and Tubular Injury in Diabetic Nephropathy. Front Physiol. 2022;13:907504. https://doi.org/10.3389/fphys.2022.907504. Irandoost E, Najibi S, Talebbeigi S, Nassiri S. Focus on the role of NLRP3 inflammasome in the pathology of endometriosis: a review on molecular mechanisms and possible medical applications. Naunyn Schmiedebergs Arch Pharmacol. 2023;396(4):621–31. https://doi.org/10.1007/s00210-022-02365-6. Fonseca BM, Pinto B, Costa L, Felgueira E, Rebelo I. Increased expression of NLRP3 inflammasome components in granulosa cells and follicular fluid interleukin(IL)-1beta and IL-18 levels in fresh IVF/ICSI cycles in women with endometriosis. J Assist Reprod Genet. 2023;40(1):191–9. https://doi.org/10.1007/s10815-022-02662-2. Rogers LM, Serezani CH, Eastman AJ, Hasty AH, Englund-Ogge L, Jacobsson B, et al. Palmitate induces apoptotic cell death and inflammasome activation in human placental macrophages. Placenta. 2020;90:45–51. https://doi.org/10.1016/j.placenta.2019.12.009. Zhu D, Zou H, Liu J, Wang J, Ma C, Yin J, et al. Inhibition of HMGB1 Ameliorates the Maternal-Fetal Interface Destruction in Unexplained Recurrent Spontaneous Abortion by Suppressing Pyroptosis Activation. Front Immunol. 2021;12:782792. https://doi.org/10.3389/fimmu.2021.782792. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7(2):99–109. https://doi.org/10.1038/nrmicro2070. Schmidt J, Weijdegard B, Mikkelsen AL, Lindenberg S, Nilsson L, Brannstrom M. Differential expression of inflammation-related genes in the ovarian stroma and granulosa cells of PCOS women. Mol Hum Reprod. 2014;20(1):49–58. https://doi.org/10.1093/molehr/gat051. Wang D, Weng Y, Zhang Y, Wang R, Wang T, Zhou J, et al. Exposure to hyperandrogen drives ovarian dysfunction and fibrosis by activating the NLRP3 inflammasome in mice. Sci Total Environ. 2020;745:141049. https://doi.org/10.1016/j.scitotenv.2020.141049. Ryan GE, Malik S, Mellon PL. Antiandrogen Treatment Ameliorates Reproductive and Metabolic Phenotypes in the Letrozole-Induced Mouse Model of PCOS. Endocrinology. 2018;159(4):1734–47. https://doi.org/10.1210/en.2017-03218. Herman R, Jensterle M, Janež A, Goričar K, Dolžan V. Genetic variability in antioxidative and inflammatory pathways modifies the risk for PCOS and influences metabolic profile of the syndrome. Metabolites. 2020;10(11):439 https://doi.org/10.3390/metabo10110439. Lai H, Jia X, Yu Q, Zhang C, Qiao J, Guan Y, et al. High-fat diet induces significant metabolic disorders in a mouse model of polycystic ovary syndrome. Biol Reprod. 2014;91(5):127. https://doi.org/10.1095/biolreprod.114.120063. Caldwell AS, Middleton LJ, Jimenez M, Desai R, McMahon AC, Allan CM, et al. Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology. 2014;155(8):3146–59. https://doi.org/10.1210/en.2014-1196. Kauffman AS, Thackray VG, Ryan GE, Tolson KP, Glidewell-Kenney CA, Semaan SJ, et al. A Novel Letrozole Model Recapitulates Both the Reproductive and Metabolic Phenotypes of Polycystic Ovary Syndrome in Female Mice. Biol Reprod. 2015;93(3):69. https://doi.org/10.1095/biolreprod.115.131631. Zhao Y, Fu L, Li R, Wang LN, Yang Y, Liu NN, et al. Metabolic profiles characterizing different phenotypes of polycystic ovary syndrome: plasma metabolomics analysis. BMC Med. 2012;10:153. https://doi.org/10.1186/1741-7015-10-153. Niu Z, Lin N, Gu R, Sun Y, Feng Y. Associations between insulin resistance, free fatty acids, and oocyte quality in polycystic ovary syndrome during in vitro fertilization. J Clin Endocrinol Metab. 2014;99(11):E2269–76. https://doi.org/10.1210/jc.2013-3942. Mu YM, Yanase T, Nishi Y, Tanaka A, Saito M, Jin CH, et al. Saturated FFAs, palmitic acid and stearic acid, induce apoptosis in human granulosa cells. Endocrinology. 2001;142(8):3590–7. https://doi.org/10.1210/endo.142.8.8293. Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev. 2011;32(1):81–151. https://doi.org/10.1210/er.2010-0013. Nelson VL, Legro RS, Strauss JF 3rd, McAllister JM. Augmented androgen production is a stable steroidogenic phenotype of propagated theca cells from polycystic ovaries. Mol Endocrinol. 1999;13(6):946–57. https://doi.org/10.1210/mend.13.6.0311. Hirsch A, Hahn D, Kempna P, Hofer G, Nuoffer JM, Mullis PE, et al. Metformin inhibits human androgen production by regulating steroidogenic enzymes HSD3B2 and CYP17A1 and complex I activity of the respiratory chain. Endocrinology. 2012;153(9):4354–66. https://doi.org/10.1210/en.2012-1145. Viinikangas T, Khosrowabadi E, Kellokumpu S. N-Glycan Biosynthesis: Basic Principles and Factors Affecting Its Outcome. Exp Suppl. 2021;112:237–57. https://doi.org/10.1007/978-3-030-76912-3_7. Freeze HH, Chong JX, Bamshad MJ, Ng BG. Solving glycosylation disorders: fundamental approaches reveal complicated pathways. Am J Hum Genet. 2014;94(2):161–75. https://doi.org/10.1016/j.ajhg.2013.10.024. Ng BG, Freeze HH. Perspectives on Glycosylation and Its Congenital Disorders. Trends Genet. 2018;34(6):466–76. https://doi.org/10.1016/j.tig.2018.03.002. Tharmalingam-Jaikaran T, Walsh SW, McGettigan PA, Potter O, Struwe WB, Evans AC, et al. N-glycan profiling of bovine follicular fluid at key dominant follicle developmental stages. Reproduction. 2014;148(6):569–80. https://doi.org/10.1530/REP-14-0035. Spitzer D, Murach KF, Lottspeich F, Staudach A, Illmensee K. Different protein patterns derived from follicular fluid of mature and immature human follicles. Hum Reprod. 1996;11(4):798–807. https://doi.org/10.1093/oxfordjournals.humrep.a019257. Meng XQ, Zheng KG, Yang Y, Jiang MX, Zhang YL, Sun QY, et al. Proline-rich tyrosine kinase2 is involved in F-actin organization during in vitro maturation of rat oocyte. Reproduction. 2006;132(6):859–67. https://doi.org/10.1530/rep.1.01212. Meng XQ, Cui B, Cheng D, Lyu H, Jiang LG, Zheng KG, et al. Activated proline-rich tyrosine kinase 2 regulates meiotic spindle assembly in the mouse oocyte. J Cell Biochem. 2018;119(1):736–47. https://doi.org/10.1002/jcb.26237. Cong Y, Wu H, Bian X, Xie Q, Lyu Q, Cui J, et al. Ptk2b deletion improves mice folliculogenesis and fecundity via inhibiting follicle loss mediated by Erk pathway. J Cell Physiol. 2021;236(2):1043–53. https://doi.org/10.1002/jcp.29914. Zheng Y, Ma L, Liu N, Tang X, Guo S, Zhang B, et al. Autophagy and apoptosis of porcine ovarian granulosa cells during follicular development. Animals (Basel). 2019;9(12):1111 https://doi.org/10.3390/ani9121111. Bhardwaj JK, Paliwal A, Saraf P, Sachdeva SN. Role of autophagy in follicular development and maintenance of primordial follicular pool in the ovary. J Cell Physiol. 2022;237(2):1157–70. https://doi.org/10.1002/jcp.30613. Choi JY, Jo MW, Lee EY, Yoon BK, Choi DS. The role of autophagy in follicular development and atresia in rat granulosa cells. Fertil Steril. 2010;93(8):2532–7. https://doi.org/10.1016/j.fertnstert.2009.11.021. Li X, Qi J, Zhu Q, He Y, Wang Y, Lu Y, et al. The role of androgen in autophagy of granulosa cells from PCOS. Gynecol Endocrinol. 2019;35(8):669–72. https://doi.org/10.1080/09513590.2018.1540567. Biasizzo MN, Kopitar-Jerala N. Interplay Between NLRP3 Inflammasome and Autophagy. Front Immunol. 2020;11:591803. https://doi.org/10.3389/fimmu.2020.591803. Sreerangaraja Urs DB, Wu WH, Komrskova K, Postlerova P, Lin YF, Tzeng CR, et al. Mitochondrial function in modulating human granulosa cell steroidogenesis and female fertility. Int J Mol Sci. 2020;21(10):3592. https://doi.org/10.3390/ijms21103592. Salehi E, Aflatoonian R, Moeini A, Yamini N, Asadi E, Khosravizadeh Z, et al. Apoptotic biomarkers in cumulus cells in relation to embryo quality in polycystic ovary syndrome. Arch Gynecol Obstet. 2017;296(6):1219–27. https://doi.org/10.1007/s00404-017-4523-5. Yu YY, Sun CX, Liu YK, Li Y, Wang L, Zhang W. Promoter methylation of CYP19A1 gene in Chinese polycystic ovary syndrome patients. Gynecol Obstet Invest. 2013;76(4):209–13. https://doi.org/10.1159/000355314. Panghiyangani R, Soeharso P, Andrijono DA, Suryandari B, Wiweko M. Kurniati, et al. CYP19A1 Gene Expression in Patients with Polycystic Ovarian Syndrome. J Hum Reprod Sci. 2020;13(2):100–3. https://doi.org/10.4103/jhrs.JHRS_142_18.