NADPH oxidase subunit 4 mediates cycling hypoxia-promoted radiation resistance in glioblastoma multiforme

Free Radical Biology and Medicine - Tập 53 - Trang 649-658 - 2012
Chia-Hung Hsieh1,2, Chung-Pu Wu3, Hsu-Tung Lee4, Ji-An Liang5, Chun-Yen Yu5, Yu-Jung Lin1
1Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
2Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
3Department of Physiology and Pharmacology, Chang Gung University, Tao-Yuan, Taiwan
4Department of Neurosurgery, Taichung Veterans General Hospital, Taichung, Taiwan
5Department of Radiation Therapy and Oncology, China Medical University Hospital, Taichung, Taiwan

Tài liệu tham khảo

Sulman, 2009, Beyond grade: molecular pathology of malignant gliomas, Semin. Radiat. Oncol., 19, 142, 10.1016/j.semradonc.2009.02.001 Salgaller, 2006, Current status of clinical trials for glioblastoma, Rev. Recent Clin. Trials, 1, 265, 10.2174/157488706778250140 Noda, 2009, Molecular advances of brain tumors in radiation oncology, Semin. Radiat. Oncol., 19, 171, 10.1016/j.semradonc.2009.02.005 Vaupel, 2004, Tumor microenvironmental physiology and its implications for radiation oncology, Semin. Radiat. Oncol., 14, 198, 10.1016/j.semradonc.2004.04.008 Dewhirst, 2009, Relationships between cycling hypoxia, HIF-1, angiogenesis and oxidative stress, Radiat. Res., 172, 653, 10.1667/RR1926.1 Martinive, 2006, Preconditioning of the tumor vasculature and tumor cells by intermittent hypoxia: implications for anticancer therapies, Cancer Res., 66, 11736, 10.1158/0008-5472.CAN-06-2056 Cairns, 2001, Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors, Cancer Res., 61, 8903 Hsieh, 2010, Cycling hypoxia increases U87 glioma cell radioresistance via ROS induced higher and long-term HIF-1 signal transduction activity, Oncol. Rep., 24, 1629, 10.3892/or_00001027 Dewhirst, 2008, Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response, Nat. Rev. Cancer, 8, 425, 10.1038/nrc2397 Toffoli, 2008, Intermittent hypoxia is a key regulator of cancer cell and endothelial cell interplay in tumours, FEBS J, 275, 2991, 10.1111/j.1742-4658.2008.06454.x Weiss, 2003, Protection against ionizing radiation by antioxidant nutrients and phytochemicals, Toxicology, 189, 1, 10.1016/S0300-483X(03)00149-5 Liou, 2010, Reactive oxygen species in cancer, Free Radic. Res., 44, 479, 10.3109/10715761003667554 Brown, 2009, Nox proteins in signal transduction, Free Radic. Biol. Med., 47, 1239, 10.1016/j.freeradbiomed.2009.07.023 Cheng, 2001, Lambeth, J. D. Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5, Gene, 269, 131, 10.1016/S0378-1119(01)00449-8 Shono, 2008, Enhanced expression of NADPH oxidase Nox4 in human gliomas and its roles in cell proliferation and survival, Int. J. Cancer, 123, 787, 10.1002/ijc.23569 Hsieh, C. H.; Chang, H. T.; Shen, W. C.; Shyu, W. C.; Liu, R. S. Imaging the impact of Nox4 in cycling hypoxia-mediated U87 glioblastoma invasion and infiltration. Mol. Imaging Biol; 2011. Hsieh, 2011, NADPH oxidase subunit 4-mediated reactive oxygen species contribute to cycling hypoxia-promoted tumor progression in glioblastoma multiforme, PLoS One, 6, e23945, 10.1371/journal.pone.0023945 Serganova, 2004, Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice, Cancer Res., 64, 6101, 10.1158/0008-5472.CAN-04-0842 Szulc, 2008, Conditional gene expression and knockdown using lentivirus vectors encoding shRNA, Methods Mol. Biol., 434, 291 Gorin, 2005, Nox4 NAD(P)H oxidase mediates hypertrophy and fibronectin expression in the diabetic kidney, J. Biol. Chem, 280, 39616, 10.1074/jbc.M502412200 Sarkaria, 2006, Use of an orthotopic xenograft model for assessing the effect of epidermal growth factor receptor amplification on glioblastoma radiation response, Clin. Cancer Res., 12, 2264, 10.1158/1078-0432.CCR-05-2510 Sadikot, 2005, Bioluminescence imaging, Proc. Am. Thorac. Soc, 2, 511 Weichselbaum, 1995, Cellular and molecular mechanisms of radioresistance, Cancer Treat. Res., 74, 131, 10.1007/978-1-4615-2023-8_7 Brown, 2004, Exploiting tumour hypoxia in cancer treatment, Nat. Rev. Cancer, 4, 437, 10.1038/nrc1367 Bedard, 2007, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology, Physiol. Rev., 87, 245, 10.1152/physrev.00044.2005 Xia, 2007, Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor, Cancer Res., 67, 10823, 10.1158/0008-5472.CAN-07-0783 Fitzgerald, 2012, Nox4 mediates renal cell carcinoma cell invasion through hypoxia-induced interleukin 6- and 8- production, PLoS One, 7, e30712, 10.1371/journal.pone.0030712 Mittal, 2007, Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature, Circ. Res., 101, 258, 10.1161/CIRCRESAHA.107.148015 Zhang, 2010, NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis, Proc. Natl. Acad. Sci. USA, 107, 18121, 10.1073/pnas.1009700107 Craige, 2011, NADPH oxidase 4 promotes endothelial angiogenesis through endothelial nitric oxide synthase activation, Circulation, 124, 731, 10.1161/CIRCULATIONAHA.111.030775 Hecker, 2009, NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury, Nat. Med, 15, 1077, 10.1038/nm.2005 Takac, 2011, Lambeth, J. D.; Shah, A. M.; Morel, F.; Brandes, R. P. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4, J. Biol. Chem., 286, 13304, 10.1074/jbc.M110.192138 New, 2012, increases the expression of fibronectin by Nox4-dependent Akt phosphorylation in renal tubular epithelial cells, Am. J. Physiol. Cell Physiol, 302, C122, 10.1152/ajpcell.00141.2011 Basuroy, 2011, oxidase-derived reactive oxygen species, via endogenous carbon monoxide, promote survival of brain endothelial cells during TNF-alpha-induced apoptosis, Am. J. Physiol. Cell Physiol, 300, C256, 10.1152/ajpcell.00272.2010 Jung, 2008, Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells, Carcinogenesis, 29, 713, 10.1093/carcin/bgn032 Kietzmann, 2005, Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression, Semin. Cell Dev. Biol, 16, 474, 10.1016/j.semcdb.2005.03.010 Bonello, 2007, Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site, Arterioscler. Thromb. Vasc. Biol., 27, 755, 10.1161/01.ATV.0000258979.92828.bc Diebold, 2010, The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1, Mol. Biol. Cell, 21, 2087, 10.1091/mbc.E09-12-1003 Manea, 2010, Transcriptional regulation of NADPH oxidase isoforms, Nox1 and Nox4, by nuclear factor-kappaB in human aortic smooth muscle cells, Biochem. Biophys. Res. Commun., 396, 901, 10.1016/j.bbrc.2010.05.019 Manea, 2008, AP-1-dependent transcriptional regulation of NADPH oxidase in human aortic smooth muscle cells: role of p22phox subunit, Arterioscler. Thromb. Vasc. Biol., 28, 878, 10.1161/ATVBAHA.108.163592 Katsuyama, 2010, NOX/NADPH oxidase, the superoxide-generating enzyme: its transcriptional regulation and physiological roles, J. Pharmacol. Sci, 114, 134, 10.1254/jphs.10R01CR Lu, 2010, Androgens induce oxidative stress and radiation resistance in prostate cancer cells though NADPH oxidase, Prostate Cancer Prostatic Dis., 13, 39, 10.1038/pcan.2009.24 Chaplin, 1986, Acute hypoxia in tumors: implications for modifiers of radiation effects, Int. J. Radiat. Oncol. Biol. Phys., 12, 1279, 10.1016/0360-3016(86)90153-7 Collins-Underwood, 2008, NADPH oxidase mediates radiation-induced oxidative stress in rat brain microvascular endothelial cells, Free Radic. Biol. Med., 45, 929, 10.1016/j.freeradbiomed.2008.06.024 Wang, 2010, Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells, Free Radic. Biol. Med., 48, 348, 10.1016/j.freeradbiomed.2009.11.005 Park, 2010, Sustained expression of NADPH oxidase 4 by p38 MAPK-Akt signaling potentiates radiation-induced differentiation of lung fibroblasts, J. Mol. Med. (Berl.), 88, 807, 10.1007/s00109-010-0622-5