Biểu hiện yếu tố phiên mã NAC, nồng độ axit amin và sự phát triển của các giống lúa tinh hoa dưới áp lực muối

Springer Science and Business Media LLC - Tập 36 - Trang 1927-1936 - 2014
Soledad García-Morales1, Fernando Carlos Gómez-Merino2, Libia Iris Trejo-Téllez1
1Colegio de Postgraduados, Campus Montecillo, Montecillo, Mexico
2Colegio de Postgraduados, Campus Córdoba, Amatlán de los Reyes, Mexico

Tóm tắt

Các yếu tố phiên mã NAC (TF) đóng vai trò quan trọng trong việc điều chỉnh khả năng chịu stress thẩm thấu ở thực vật. Chúng tôi đã kiểm tra sự biểu hiện của 57 gen NAC trong sự hiện diện của NaCl trong lá non của hai giống lúa tinh hoa, Cotaxtla và Tres Ríos, mà thể hiện các phản ứng trái ngược đối với độ mặn ở mức độ sinh hóa và sinh lý. Bằng cách sử dụng qRT-PCR, sự biểu hiện của 41 trong số 57 gen NAC đã được xác nhận, trong đó 23 gen cho thấy sự điều chỉnh bởi NaCl. Chúng tôi đã xác định hai gen NAC (Os02g56600 và Os12g07790) được kích thích trong Cotaxtla, nhưng bị ức chế trong Tres Ríos khi cây được tiếp xúc với dung dịch dinh dưỡng có 100 mM NaCl. Cả hai giống lúa tinh hoa đều cho thấy cây được xử lý có nồng độ axit amin tổng cộng và proline cao hơn so với đối chứng; trong tất cả các trường hợp, cây Cotaxtla tích lũy nhiều axit amin tự do và proline hơn so với cây Tres Ríos. Hơn nữa, sự phát triển chồi bị ảnh hưởng nhiều hơn ở cả hai giống, trong khi chiều dài rễ không bị giảm ở cây được xử lý so với đối chứng. Chúng tôi kết luận rằng cả hai giống lúa tinh hoa này thể hiện các mô hình biểu hiện khác nhau của các yếu tố phiên mã NAC cũng như các phản ứng sinh hóa và sinh lý đối với stress muối, dẫn đến hiệu suất tốt hơn của cây Cotaxtla so với cây Tres Ríos dưới các điều kiện thí nghiệm của chúng tôi.

Từ khóa

#NAC transcription factors #rice cultivars #osmotic stress #NaCl #qRT-PCR #amino acids #proline #salinity tolerance

Tài liệu tham khảo

Ahmed CB, Rouina BB, Sensoy S, Boukhriss M, Abdullah FB (2010) Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J Agric Food Chem 58:4216–4222 Albacete A, Ghanem ME, Martínez-Andújar C, Acosta M, Sánchez-Bravo J, Martínez V, Lutts S, Dodd IC, Pérez-Alfocea F (2008) Hormonal changes in relation to biomass partitioning and shoot growth impairment in salized tomato (Solanum lycopersicum L.) plants. J Exp Bot 69:4118–4131 Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216 Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water stress studies. Plant Soil 39:2005–2007 Bernstein N, Kafkafi U (2002) Root growth under salinity stress. In: Weisel Y, Eshel A, Kafkafi U (eds) Plant root: the hidden half. Marcel Dekker, New York, pp 787–819 Bernstein N, Meiri A, Zilberstaine M (2004) Root growth of avocado is more sensitive to salinity than shoot growth. J Amer Hort Sci 129:188–192 Caldana C, Scheible WR, Mueller-Roeber B, Ruzicic S (2007) A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Meth 3(7). doi:10.1186/1746-4811-3-7 Cenci A, Guignon V, Roux N, Rouard M (2014) Genomic analysis of NAC transcription factors in banana (Musa acuminata) and definition of NAC orthologous groups for monocots and dicots. Plant Mol Biol 85(1–2):63–80. doi:10.1007/s11103-013-0169-2 Chang B, Yang L, Cong W, Zu Y, Tang Z (2014) The improved resistance to high salinity induced by trehalose is associated with ionic regulation and osmotic adjustment in Catharanthus roseus. Plant Physiol Biochem 77C:140–148. doi:10.1016/j.plaphy.2014.02.001 Chen X, Wang Y, Lv B, Li J, Luo L, Lu S, Zhang X, Ma H, Ming F (2014) The NAC family of transcription factor OSNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol. doi:10.1093/pcp/pct2014 Chiou TJ, Aung K, Lin SI, Wu CC, Chiang SF, Su CL (2006) Regulation of phosphate homeostasis by microRNA in Arabidopsis. Plant Cell 18:412–421 Czechowski T, Bari RP, Stitt M, Scheible WR, Udvardi M (2004) Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant J 38:366–379 Díaz-Martín J, Almoguera C, Prieto-Dapena P, Espinosa JM, Jordano J (2005) Functional interaction between two transcription factors involved in the developmental regulation of a small heat stress protein gene promoter. Plant Physiol 139:1483–1494 Fang J, You J, Xie K, Xie W, Xiong L (2008) Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Mol Genet Genomics 280:547–563. doi:10.1007/s00438-008-0386-6 Friedman M (2004) Applications of the ninhydrin reaction for analysis of amino acids, peptides, and proteins to agricultural biomedical sciences. J Amer Food Chem 52:385–406 García-Morales S, Trejo-Téllez LI, Gómez-Merino FC, Caldana C, Espinosa-Victoria D, Herrera-Cabrera E (2012) Growth, photosynthetic activity and potassium and sodium concentration in rice plants under salt stress. Acta Sci 34:317–324 Hameed M, Nawaz T, Ashraf M, Naz N, Batool R, Sajid M, Ahmad A, Riaz A (2013) Physioanatomical adaptations in response to salt stress in Sporobolus arabicus (Poaceae) from the Salt Range, Pakistan. Turk J Bot 37:715–724. doi:10.3906/bot-1208-1 Hamilton EW, Heckathorn SA (2001) Mitochondrial adaptation to NaCl. Complex I is protected by antioxidants and small heat shock proteins, whereas complex II is protected by proline and betaine. Plant Physiol 126:1266–1274 Hasanuzzaman M, Nahar K, Fujita M (2013) Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In: Ahmad P, Azooz MN, Prasad MNV (eds) Ecophysiology and responses of plant under salt stress. Springer, New York, pp 25–87 Hasegawa P, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499 Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7:1–11 Hoque MA, Okuma E, Nakamara Y, Shimoishi Y, Murata Y (2008) Proline and glycine betaine enhance antioxidant defense and methylglyoxal detoxification systems and reduce NaCl induced damage in cultured tobacco cells. J Plant Physiol 165:813–824 Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Nat Acad Sci USA 103:12987–12992. doi:10.1073/pnas.0604882103 Jeong JS, Kim YS, Baek KH, Jung H, Ha SH, Choi YD, Kim M, Reuzeau C, Kim JK (2010) Root-specific expression of OsNAC10 improves drought tolerance and grain yield in rice under field drought conditions. Plant Physiol 153:185–197 Khedr AHA, Abbas MA, Wahid AAA, Quick WP, Abogadallah GM (2003) Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54:2553–2562 Le DT, Nishiyama R, Watanabe Y, Mochida K, Yamaguchi-Shinozaki K, Shinozaki K, Tran LSP (2011) Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res 18:263–276 Liu G, Li X, Jin S, Liu X, Zhu L, Nie X, Zhang X (2014) Overexpression of rice NAC gene SNAC1 improves drought and salt tolerance by enhancing root development and reducing transpiration rate in transgenic cotton. PLoS One 9(1):e86895. doi:10.1371/journal.pone.0086895 Mao X, Zhang H, Qian X, Li A, Zhao G, Jing R (2012) TaNAC2, a NAC-type wheat transcription factor conferring enhanced multiple abiotic stress tolerances in Arabidopsis. J Exp Bot 63:2933–2946 Mao X, Chen S, Li A, Zhai C, Jing R (2014) Novel NAC transcription factor TaNAC67 confers enhanced multi-abiotic stress tolerance in Arabidopsis. PLoS One 9(1):e84359. doi:10.1371/journal.pone.0084359 Matysik J, Alia, Bhalu B, Mohanty P (2002) Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr Sci 82:525–532 Momayezi MR, Zaharah AR, Hanafi MM (2012) The effects of cation ratios on root lamella suberization in rice (Oryza sativa L.) with contrasting salt tolerance. Int J Agron. doi:10.1155/2012/76919 Moradi F, Ismail AM (2007) Responses of photosynthesis, chlorophyll fluorescence and ROS-scavenging systems to salt stress during seedling and reproductive stages in rice. Ann Bot 99:1161–1173 Munns R (2002) Salinity, growth and phytohormones. In: Lauchli A, Luttge U (eds) Salinity: environment—plants-molecules. Kluwer, Dordrecht, pp 271–290 Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663 Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681 Nakashima K, Tran LS, Van Nguyen D, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice. Plant J 51:617–630 Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta 1819:97–103 Nounjan N, Nghia PT, Theerakulpisut P (2012) Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J Plant Physiol 169:59–604 Nuruzzaman M, Manimekalai R, Sharoni AM, Satoh K, Kondoh H, Ooka H, Kikuchi S (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44 Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248. doi:10.3389/fmicb.2013.00248 Puranik S, Sahu PP, Srivastava PS, Prasad M (2012) NAC proteins: regulation and role in stress tolerance. Trend Plant Sci 17:369–381 Ramegowda V, Senthil-Kumar M, Nataraja KN, Reddy MK, Mysore KS, Udayakumar M (2012) Expression of a finger millet transcription factor, EcNAC1, in tobacco confers abiotic stress-tolerance. PLoS One 7:e40397. doi:10.1371/journal.pone.0040397 Saad AS, Li X, Li HP, Huang T, Gao CS, Guo MW, Cheng W, Zhao GY, Liao YC (2013) A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci 203–204:33–40. doi:10.1016/j.plantsci.2012.12.016 SAS (2012) SAS/STAT® 9.3 User’s Guide. SAS Institute. Cary, NC, USA Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochem 28:1057–1060 Sneha S, Rishi A, Dadhich A, Chandra S (2013) Effect of salinity on seed germination, accumulation of proline and free amino acids in Pennisetum glaucum (L.) R. Br. Pak J Biol Sci 16:877–881 Sobahan MA, Arias CR, Okuma E, Shimoishi Y, Nakamura Y, Hirai Y, Mori IC, Murata Y (2009) Exogenousproline and glycinebetaine suppress apoplastic flow to reduce Na+ uptake in rice seedlings. Biosci Biotechnol Biochem 73:2037–2042 Sobhanian H, Aghaei K, Komatsu S (2011) Changes in the plant proteome resulting from salt stress: toward the creation of salt-tolerant crops? J Proteomics 74:1323–1337 Sperotto RA, Ricachenevsky FK, Duarte GL, Boff T, Lopes KL, Sperb ER, Grusak MA, Fett JP (2009) Identification of up-regulated genes in flag leaves during rice grain filling and characterization of OsNAC5, a new ABA-dependent transcription factor. Planta 230:985–1002. doi:10.1007/s00425-009-1000-9 Szabados L, Svouré A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97 Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y et al (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498. doi:10.1105/tpc.104.022699 Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3. doi:10.1186/gb-2002-3-7-research0034 Wankhade SD, Cornejo MJ, Mateu-Andrés I, Sanz A (2013) Morpho-physiological variations in response to NaCl stress during vegetative and reproductive development of rice. Acta Physiol Plant 35:323–333 Zhang B, Pan X, Cobb GP, Anderson TA (2006) Plant microRNA: a small regulatory molecule with big impact. Dev Biol 289:3–16 Zhang ZH, Liu Q, Song HX, Rong XM, Abdelbagi MI (2012) Responses of different rice (Oryza sativa L.) genotypes to salt stress and relation to carbohydrate metabolism and chlorophyll content. Afr J Agric Res 7:19–27 Zhong H, Guo QQ, Chen L, Ren F, Wang QQ, Zheng Y, Li XB (2012) Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress. Plant Cell Rep 31:1991–2003. doi:10.1007/s00299-012-1311-3