N2O Emissions Mitigation in Acidic Soil Following Biochar Application Under Different Moisture Regimes

Muhammad Aamer1, Muhammad Shaaban2, Muhammad Umair Hassan1, Ying Liu1, Haiying Tang1, Qiang Ma1, Hassan Munir3, Adnan Rasheed4, Xinmei Li1, Ping Li1, Huang Guo-qin1
1Research Center On Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
2Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
3Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
4Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aamer M, Shaaban M, Hassan MU, Guoqin H, Ying L, Ying TH, Rasul F, Qiaoying M, Zhuanling L, Rasheed A, Peng Z (2020) Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH. J Environ Manag 255:109891. https://doi.org/10.1016/j.jenvman.2019.109891

Agegnehu G, Srivastava AK, Bird MI (2017) The role of biochar and biochar-compost in improving soil quality and crop performance: a review. Appl Soil Ecol 119:156–170. https://doi.org/10.1016/j.apsoil.2017.06.008

Alfaro M, Salazar F, Hube S, Ramírez L, Mora M (2018) Ammonia and nitrous oxide emissions as affected by nitrification and urease inhibitors. J Soil Sci Plant Nutr 18(2):479–486. https://doi.org/10.4067/S0718-95162018005001501

Awad YM, Wang J, Igalavithana AD, Tsang DC, Kim KH, Lee SS, Ok YS (2018) Biochar effects on rice paddy: meta-analysis. Advan Agron 148:1–32. https://doi.org/10.1016/bs.agron.2017.11.005

Bakken LR, Bergaust L, Liu BB, Frostegard A (2012) Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils. Philos T R Soc B 367:1226–1234. https://doi.org/10.1098/rstb.2011.0321

Barracosa P, Cardoso I, Marques F, Pinto A, Oliveira J, Trindade H, Rodrigues P, Pereira JL (2020) Effect of biochar on emission of greenhouse gases and productivity of cardoon crop (Cynara cardunculus L.). J Soil Sci Plant Nutr:1–8. https://doi.org/10.1007/s42729-020-00242-w

Berek AK, Hue NV (2016) Characterization of biochars and their use as an amendment to acid soils. Soil Sci 181:412–426. https://doi.org/10.1097/SS.0000000000000177

Bergaust L, Mao Y, Bakken LR, Frostegård Å (2010) Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrogen oxide reductase in Paracoccus denitrificans. Appl Environ Microbiol 76:6387–6396. https://doi.org/10.1128/AEM.00608-10

Borchard N, Schirrmann M, Cayuela ML, Kammann C, Wrage-Mönnig N, Estavillo JM, Fuertes-Mendizábal T, Sigua G, Spokas K, Ippolito JA, Novak J (2019) Biochar, soil and land-use interactions that reduce nitrate leaching and N2O emissions: a meta-analysis. Sci Tot Environ 15:2354–2364. https://doi.org/10.1016/j.scitotenv.2018.10.060

Cai Y, Ding W, Luo J (2013) Nitrous oxide emissions from Chinese maize wheat rotation systems: a 3-year field measurement. Atmos Environ 65:112–122. https://doi.org/10.1016/j.atmosenv.2012.10.038

Castellano MJ, Schmidt JP, Kaye JP, Walker C, Graham CB, Lin H, Dell CJ (2010) Hydrological and biogeochemical controls on the timing and magnitude of nitrous oxide flux across an agricultural landscape. Glob Chan Biol 16:2711–2720. https://doi.org/10.1111/j.1365-2486.2009.02116.x

Cayuela ML, van Zwieten L, Singh BP, Jeffery S, Roig A, Sánchez-Monedero MA (2014) Biochar’s role in mitigating soil nitrous oxide emissions: a review and meta-analysis. Agric Ecosyst Environ 191:5–16. https://doi.org/10.1016/j.agee.2013.10.009

Cayuela ML, Aguilera E, Sanz-Cobena A, Adams DC, Abalos D, Barton L, Ryals R, Silver WL, Alfaro MA, Pappa VA, Smith P (2017) Direct nitrous oxide emissions in Mediterranean climate cropping systems: emission factors based on a meta-analysis of available measurement data. Agric Ecosys Envior 238:25–35. https://doi.org/10.1016/j.agee.2016.10.006

Chapuis-Lardy L, Wrage N, Metay A, Chotte JL, Bernoux M (2007) Soils, a sink for N2O? A review. Global Change Bio 13:1–17. https://doi.org/10.1111/j.1365-2486.2006.01280.x

Chiodini ME, Perego A, Carozzi M, Acutis M (2019) The nitrification inhibitor vizura reduces N2O emissions when added to digestate before injection under irrigated maize in the Po Valley (northern Italy). Agron 9:431. https://doi.org/10.3390/agronomy9080431

Clough TJ, Condron LM, Kammann C, Müller C (2013) A review of biochar and soil nitrogen dynamics. Agron 3:275–293. https://doi.org/10.3390/agronomy3020275

Cowan NJ, Levy PE, Famulari D, Anderson M, Drewer J, Carozzi M, Reay DS, Skiba UM (2016) The influence of tillage on N2O fluxes from an intensively managed grazed grassland in Scotland. Biogeosciences 13:4811–4821. https://doi.org/10.5194/bg-13-4811-2016

Dai ZM, Zhang XJ, Tang C, Muhammad N, Wu JJ, Brookes PC, Xu JM (2017) Potential role of biochars in decreasing soil acidification; critical review. Sci Tot Environ 581:601–611. https://doi.org/10.1016/j.scitotenv.2016.12.169

Deng BL, Li ZZ, Zhang L, Ma YC, Li Z, Zhang WY, Guo XM, Niu DK, Siemann E (2016) Increases in soil CO2 and N2O emissions with warming depend on plant species in restored alpine meadows of Wugong Mountain, China. J Soils Sed 16:777–784. https://doi.org/10.1007/s11368-016-1488-0

Ducey TF, Ippolito JA, Cantrell KB, Novak JM, Lentz RD (2013) Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances. Appl Soil Ecol 65:65–72. https://doi.org/10.1016/j.apsoil.2013.01.006

Feng Z, Sheng Y, Cai F, Wang W, Zhu L (2018) Separated pathways for biochar to affect soil N2O emission under different moisture contents. Sci Tot Environ 645:887–894. https://doi.org/10.1016/j.scitotenv.2018.07.224

Fidel RB, Laird DA, Thompson ML, Lawrinenko M (2017) Characterization and quantification of biochar alkalinity. Chemosp 167:367–373. https://doi.org/10.1016/j.chemosphere.2016.09.151

Fryda L, Visser R (2015) Biochar for soil improvement: evaluation of biochar from gasification and slow pyrolysis. Agric 5:1076–1115. https://doi.org/10.3390/agriculture5041076

Gerber JS, Carlson KM, Makowski D, Mueller ND, Cortazar-Atauri I, Havlík P, Herrero M, Launay M, O’Connell CS, Smith P, West PC (2016) Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Glob Chang Biol 22:3383–3394. https://doi.org/10.1111/gcb.13341

Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physicochemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecos Environ 206:46–59. https://doi.org/10.1016/j.agee.2015.03.015

Harter J, Krause HM, Schuettler S, Ruser R, Fromme M, Scholten T, Kappler A, Behrens S (2014) Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. Intern Soc Microb Ecol J 8:660–674. https://doi.org/10.1038/ismej.2013.160

Hénault C, Bourennane H, Ayzac A, Ratié C, Saby NP, Cohan JP, Eglin T, Gall C (2019) Management of soil pH promotes nitrous oxide reduction and thus mitigates soil emissions of this greenhouse gas. Sci Rep 9(1):1–11. https://doi.org/10.1038/s41598-019-56694-3

Jeffery S, Verheijen F, Van DV, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecos Environ 144:175–187. https://doi.org/10.1016/j.agee.2011.08.015

Jin T, Shimizu M, Marutani S, Desyatkin AR, Iizuka N, Hata H, Hatano R (2010) Effect of chemical fertilizer and manure application on N2O emission from reed canary grassland in Hokkaido, Japan. Soil Sci Plant Nutr 56:53–65. https://doi.org/10.1111/j.1747-0765.2010.00447.x

Joseph SD, Camps-Arbestain M, Lin Y, Munroe P, Chia CH, Hook J, van Zwieten L, Kimber S, Cowie A, Singh BP, Lehmann J, Foidl N, Smernik RJ, Amonette JE (2010) An investigation into the reactions of biochar in soil. Aust J Soil Res 48:501–515. https://doi.org/10.1071/SR10009

Jones CM, Spor A, Brennan FP, Breuil MC, Bru D, Lemanceau P, Griffiths B, Hallin S, Philippot L (2014) Recently identified microbial guild mediates soil N2O sink capacity. Nat Clim Chan 4:801–805. https://doi.org/10.1038/nclimate2301

Kammann C, Ippolito J, Hagemann N, Borchard N, Cayuela ML, Estavillo JM, Fuertes-Mendizabal T, Jeffery S, Kern J, Novak J, Rasse D, Saarnio S, Schmidt HP, Spokas K, Wrage-Mönnig N (2017) Biochar as a tool to reduce the agricultural greenhouse-gas burden knowns, unknowns and future research needs. J Environ Eng Landsc Manag 25:114–139. https://doi.org/10.3846/16486897.2017.1319375

Khalid MS, Shaaban M, Hu R (2019) N2O, CH4, and CO2 emissions from continuous flooded, wet, and flooded converted to wet soils. J Soil Sci Plant Nutr 19(2):342–351. https://doi.org/10.1007/s42729-019-00034-x

Levy-Booth DJ, Prescott CE, Grayston SJ (2014) Microbial functional genes involved in nitrogen fixation, nitrification and denitrification in forest ecosystems. Soil Biol Biochem 75:11–25. https://doi.org/10.1016/j.soilbio.2014.03.021

Liu SW, Zhang YJ, Zong YJ, Hu ZQ, Wu S, Zhou J, Jin YG, Zou JW (2016) Response of soil carbon dioxide fluxes, soil organic carbon and microbial biomass carbon to biochar amendment: a meta-analysis. GCB Bioenerg 8:392–406. https://doi.org/10.1111/gcbb.12265

Liu Q, Yang YZ, Benjuan L, James E, Amonette ZL, Gang L, Per A, Zubin X (2018) How does biochar influence soil N cycle? A meta-analysis. Plant Soil 426:211–225. https://doi.org/10.1007/s11104-018-3619-4

Liu Y, Haiying T, Aamer M, Guoqin H (2019a) Emission mechanism and reduction countermeasures of agricultural greenhouse gases – a review. Greenhouse Gas Sci Technol 0: 1–11. https://doi.org/10.1002/ghg.1848, 9

Liu Y, Tang H, Muhammad A, Huang G (2019b) The effects of Chinese milk vetch returning with nitrogen fertilizer on rice yield and greenhouse gas emissions. Greenhouse Gases: Sci Tech 9:743–753. https://doi.org/10.1002/ghg.1892

Liu Y, Tang H, Muhammad A, Zhong C, Li P, Zhang P, Yang B, Huang G (2019c) Rice yield and greenhouse gas emissions affected by Chinese milk vetch and rice straw retention with reduced nitrogen fertilization. Agron J 111:3028–3038. https://doi.org/10.2134/agronj2019.03.0145

Lopez-Ponnada EV, Lynn TJ, Peterson M, Ergas SJ, Mihelcic JR (2017) Application of denitrifying wood chip bioreactors for management of residential non-point sources of nitrogen. J Biol Eng 11:16. https://doi.org/10.1186/s13036-017-0057-4

Moorcroft MJ, Davis J, Compton RG (2001) Detection and determination of nitrate and nitrite: a review. Talanta 54:785–803. https://doi.org/10.1016/S0039-9140(01)00323-X

Obia A, Cornelissen G, Mulder J, Dörsch P (2015) Effect of soil pH increase by biochar on NO, N2O and N2 production during denitrification in acid soils. PLoS One 10:e0138781. https://doi.org/10.1371/journal.pone.0138781

Perego A, Wu L, Gerosa G, Finco A, Chiazzese M, Maducci S (2016) Field evaluation combined with modelling analysis to study fertilizer and tillage as factors affecting N2O emissions: a case study in the Po valley (northern Italy). Agric Ecosyst Environ 225:72–85. https://doi.org/10.1016/j.agee.2016.04.003

Pereira JL, Carranca C, Coutinho J, Trindade H (2020) The effect of soil type on gaseous emissions from flooded rice fields in Portugal. J Soil Sci Plant Nutr:1–9. https://doi.org/10.1007/s42729-020-00243-9

Prommer J, Wanek W, Hofhansl F, Trojan D, Offre P, Urich T, Schleper C, Sassmann S, Kitzler B, Soja G, Hood-Nowotny RC (2014) Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial. PLoS One 9:e86388. https://doi.org/10.1371/journal.pone.0086388

Qu Z, Wang J, Almøy T, Bakken LR (2014) Excessive use of nitrogen in Chinese agriculture results in high N2O/(N2O+N2) product ratio of denitrification, primarily due to acidification of the soils. Glob Chan Biol 20:1685–1698. https://doi.org/10.1111/gcb.12461

Qu Z, Bakken LR, Molstad L, Frostegård Å, Bergaust LL (2016) Transcriptional and metabolic regulation of denitrification in P aracoccus denitrificans allows low but significant activity of nitrous oxide reductase under oxic conditions. Environ Microbiol 18:2951–2963. https://doi.org/10.1111/1462-2920.13128

Rhoades CC, Minatre KL, Pierson DN, Fegel TS, Cotrufo MF, Kelly EF (2017) Examining the potential of forest residue-based amendments for post-wildfire rehabilitation in Colorado, USA. Scientifica 4758316:1–10. https://doi.org/10.1155/2017/4758316

Scheiner D (1976) Determination of ammonia and Kjeldahl nitrogen by indophenol method. Water Res 10:31–36. https://doi.org/10.1016/0043-1354(76)90154-8

Shaaban M, Abid M, Qian P (2013) Short term influence of gypsum, farm manure and commercial humic acid on physical properties of salt affected soil in rice paddy system. J Chem Soc Pak 35:1034–1040

Shaaban M, Peng QA, Hu R, Wu Y, Lin S, Zhao J (2015) Dolomite application to acidic soils: a promising option for mitigating N2O emissions. Environ Sci Pollut Res 22:19961–19970. https://doi.org/10.1007/s11356-015-5238-4

Shaaban M, Van Zwieten L, Bashir S, Younas A, Nunez-Delgado A, Chhajro MA, Kubar KA, Ali U, Rana MS, Mehmood MA, Hu R (2018a) A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J Environ Manag 228:429–440. https://doi.org/10.1016/j.jenvman.2018.09.006

Shaaban M, Wu Y, Khalid MS, Peng Q, Xu X, Wu L, Hu R (2018b) Reduction in soil N2O emissions by pH manipulation and enhanced nosZ gene transcription under different water regimes. Environ Pollu 235:625–631. https://doi.org/10.1016/j.envpol.2017.12.066

Shad N, Zhang L, Shah GM, Haifu F, Ilyas M, Ali A, Khan SA (2020) Plant invasion and N2O emission in forest ecosystems. Advances in forest management under global change, IntechOpen. https://doi.org/10.5772/intechopen.92239

Sheng Y, Zhu L (2018) Biochar alters microbial community and carbon sequestration potential across different soil pH. Sci Tot Environ 622:1391–1399. https://doi.org/10.1016/j.scitotenv.2017.11.337

Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224–1235. https://doi.org/10.2134/jeq2009.0138

Song Y, Zhang X, Ma B, Chang SX, Gong J (2014) Biochar addition affected the dynamics of ammonia oxidizers and nitrification in microcosms of a coastal alkaline soil. Biol Ferti Soils 50:321–332. https://doi.org/10.1007/s00374-013-0857-8

Steel RGD, Torrie JH, Dicky DA (1997) Principles and procedures of statistics, a biometrical approach, 3rd edn. McGraw Hill, Inc. Book Co NY, USA, pp 352–358

Van Zwieten L, Kimber S, Morris S, Downie A, Berger E, Rust J, Scheer C (2010) Influence of biochars on flux of N2O and CO2 from Ferrosol. Soil Res 48:555–568. https://doi.org/10.1071/SR10004

Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial C. Soil Biol Biochem 19: 703–707

Vilain G, Garnier J, Tallec G, Cellier P (2010) Effect of slope position and land use on nitrous oxide (N2O) emissions (Seine Basin, France). Agric For Meteorol 150:1192–1202. https://doi.org/10.1016/j.agrformet.2010.05.004

Wang Q, Hu H, Shen J, Du S, Zhang L, He J, Han L (2017) Effects of the nitrification inhibitor dicyandiamide (DCD) on N2O emissions and the abundance of nitrifiers and denitrifiers in two contrasting agricultural soils. J soil sedi 17:1635–1643. https://doi.org/10.1007/s11368-016-1633-9

Wang Y, Wang Y (2003) Quick measurement of CH4, CO2 and N2O emissions from a short-plant ecosystem. Adv Atmos Sci 20:842–844. https://doi.org/10.1007/BF02915410

WMO (2017) World Meteorological Organization greenhouse gas bulletin: the state of greenhouse gases in the atmosphere based on observations through 2016, Geneva

Wu L, Tang S, He D, Wu X, Shaaban M, Wang M, Zhao J, Khan I, Zheng X, Hu R, Horwath WR (2017) Conversion from rice to vegetable production increases N2O emission via increased soil organic matter mineralization. Sci Tot Environ 583:190–201. https://doi.org/10.1016/j.scitotenv.2017.01.050

Xiao Y, Che Y, Zhang F, Li Y, Liu M (2018) Effects of biochar, N fertilizer, and crop residues on greenhouse gas emissions from acidic soils. Clean Soil Air Water 4:1700346. https://doi.org/10.1002/clen.201700346

Xu HJ, Wang XH, Li H, Yao HY, Su JQ, Zhu YG (2014) Biochar impacts soil microbial community composition and nitrogen cycling in an acidic soil planted with rape. Environ Sci Technol 48:9391–9399. https://doi.org/10.1021/es5021058

Yang H, Sheng R, Zhang Z, Wang L, Wang Q, Wei W (2016) Responses of nitrifying and denitrifying bacteria to flooding-drying cycles in flooded rice soil. Appl Soil Ecol 103:101–109. https://doi.org/10.1016/j.apsoil.2016.03.008

Yang W, Feng G, Miles D, Gao L, Jia Y, Li C, Qu Z (2020) Impact of biochar on greenhouse gas emissions and soil carbon sequestration in corn grown under drip irrigation with mulching. Sci Total Environ 138752:138752. https://doi.org/10.1016/j.scitotenv.2020.138752

Yi YM, Sung K (2015) Influence of washing treatment on the qualities of heavy metal-contaminated soil. Ecol Eng 81:89–92. https://doi.org/10.1016/j.ecoleng.2015.04.034

Yuan JH, Xu RK (2011) The amelioration effects of low temperature biochar generated from nine crop residues on an acidic ultisol. Soil Use Manag 27:110–115. https://doi.org/10.1111/j.1475-2743.2010.00317.x

Zumft WG (1999) The denitrifying prokaryotes. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds) The prokaryotes: an evolving electronic resource for the microbiological community, third edn. Springer- Verlag, New York