N-fold Darboux transformations and exact solutions of the combined Toda lattice and relativistic Toda lattice equation
Tóm tắt
In this paper, the N-fold Darboux transformation (DT) of the combined Toda lattice and relativistic Toda lattice equation is constructed in terms of determinants. Comparing with the usual 1-fold DT of equations, this kind of N-fold DT enables us to generate the multi-soliton solutions without complicated recursive process. As applications of the N-fold DT, we derive two kinds of N-fold explicit exact solutions from two different seed solutions and plot the figures with properly parameters to illustrate the propagation of solitary waves. What’s more, we present the relationships between the structures of exact solutions parameters with $$N=1$$ , from which we find the 1-fold solutions may be one soliton solutions or periodic solutions and the waves pass through without change of shapes, amplitudes, wavelengths and directions, etc. The results in this paper might be helpful for interpreting certain physical phenomena.
Tài liệu tham khảo
Fermi, E., Pasta, P., Ulam, S., Tsingou, M.: Studies of the nonlinear problems. Los Alamos Scientific Lab., N. Mex, Technical report (1955)
citation_title=Theory of Nonlinear Lattices; citation_publication_date=1989; citation_id=CR2; citation_author=M Toda; citation_publisher=Springer
citation_journal_title=J. Math. Phys.; citation_title=Nonlinear differential-difference equations; citation_author=MJ Ablowitz, JF Ladik; citation_volume=16; citation_publication_date=1975; citation_pages=598-603; citation_doi=10.1063/1.522558; citation_id=CR3
citation_journal_title=Prog. Theor. Phys. Suppl.; citation_title=Transformation theories for nonlinear discrete systems; citation_author=M Wadati; citation_volume=59; citation_publication_date=1977; citation_pages=36-63; citation_doi=10.1143/PTPS.59.36; citation_id=CR4
citation_journal_title=Prog. Theor. Phys. Suppl.; citation_title=Waves in nonlinear lattice; citation_author=M Toda; citation_volume=45; citation_publication_date=1970; citation_pages=174-200; citation_doi=10.1143/PTPS.45.174; citation_id=CR5
citation_journal_title=Commun. Math. Phys.; citation_title=Relativistic Toda systems; citation_author=SNM Ruijsenaars; citation_volume=133; citation_publication_date=1990; citation_pages=217-47; citation_doi=10.1007/BF02097366; citation_id=CR6
citation_journal_title=Phys. Lett. A; citation_title=Lax representation and complete integrability for the periodic relativistic Toda lattice; citation_author=M Bruschi, O Ragnisco; citation_volume=134; citation_publication_date=1989; citation_pages=365-70; citation_doi=10.1016/0375-9601(89)90736-6; citation_id=CR7
citation_journal_title=J. Phys. A Math. Gen.; citation_title=On some integrable systems related to the Toda lattice; citation_author=YB Suris; citation_volume=30; citation_publication_date=1997; citation_pages=2235; citation_doi=10.1088/0305-4470/30/6/041; citation_id=CR8
citation_journal_title=Phys. Lett. A; citation_title=On the bi-Hamiltonian structure of Toda and relativistic Toda lattice; citation_author=YB Suris; citation_volume=180; citation_publication_date=1993; citation_pages=419-29; citation_doi=10.1016/0375-9601(93)90293-9; citation_id=CR9
citation_journal_title=Chaos Solitons Fract.; citation_title=The conservation laws of some discrete soliton systems; citation_author=DJ Zhang, DY Chen; citation_volume=14; citation_publication_date=2002; citation_pages=573-579; citation_doi=10.1016/S0960-0779(01)00238-7; citation_id=CR10
citation_journal_title=Rep. Math. Phys.; citation_title=A hierarchy of integrable differential-difference equations and darboux transformation; citation_author=FC Fan, SY Shi, ZG Xu; citation_volume=84; citation_publication_date=2019; citation_pages=289-301; citation_doi=10.1016/S0034-4877(19)30094-1; citation_id=CR11
citation_journal_title=Chin. J. Phys.; citation_title=Soliton solution of the Toda lattice equation by the Darboux transformation; citation_author=XQ Zhang, HX Yang, JC Zhao, XX Xu; citation_volume=44; citation_publication_date=2006; citation_pages=109-116; citation_id=CR12
citation_journal_title=Rep. Math. Phys.; citation_title=N-fold Darboux transformation and soliton solutions for Toda lattice equation; citation_author=XY Wen; citation_volume=68; citation_issue=2; citation_publication_date=2011; citation_pages=211-223; citation_doi=10.1016/S0034-4877(12)60005-6; citation_id=CR13
citation_journal_title=J. Phys. A Math. Gen.; citation_title=Integrable relativistic Toda type lattice hierarchies, associated coupling systems and the Darboux transformation; citation_author=HX Yang, XX Xu, YP Sun, HY Ding; citation_volume=39; citation_issue=15; citation_publication_date=2006; citation_pages=3933; citation_doi=10.1088/0305-4470/39/15/007; citation_id=CR14
citation_journal_title=J. Phys. A Math. Gen.; citation_title=A modified Toda spectral problem and its hierarchy of bi-Hamiltonian lattice equations; citation_author=WX Ma, XX Xu; citation_volume=37; citation_issue=4; citation_publication_date=2004; citation_pages=1323; citation_doi=10.1088/0305-4470/37/4/018; citation_id=CR15
citation_journal_title=Phys. Lett. A; citation_title=Approximate soliton solutions around an exact soliton solution of the Toda lattice equation; citation_author=S Takeno, K Kisoda, S Homma; citation_volume=130; citation_publication_date=1988; citation_pages=279-282; citation_doi=10.1016/0375-9601(88)90610-X; citation_id=CR16
citation_journal_title=J. Phys. A: Math. Gen.; citation_title=A Darboux transformation and an exact solution for the relativistic Toda lattice equation; citation_author=RG Zhou, QY Jiang; citation_volume=38; citation_publication_date=2005; citation_pages=7735; citation_doi=10.1088/0305-4470/38/35/007; citation_id=CR17
citation_journal_title=Chaos Solitons Fract.; citation_title=Rational solutions of the Toda lattice equation in Casoratian form; citation_author=WX Ma, YC You; citation_volume=22; citation_publication_date=2004; citation_pages=395-406; citation_doi=10.1016/j.chaos.2004.02.011; citation_id=CR18
citation_journal_title=Phys. A; citation_title=Complexiton solutions of the Toda lattice equation; citation_author=WX Ma, K Maruno; citation_volume=343; citation_publication_date=2004; citation_pages=219-237; citation_doi=10.1016/j.physa.2004.06.072; citation_id=CR19
citation_journal_title=J. Phys. Soc. Jpn.; citation_title=Generalized Casorati determinant and positon-negaton type solutions of the Toda lattice equation; citation_author=K Maruno, WX Ma, M Oikawa; citation_volume=73; citation_publication_date=2004; citation_pages=831-837; citation_doi=10.1143/JPSJ.73.831; citation_id=CR20
citation_journal_title=J. Differ. Equ.; citation_title=Lump solutions to nonlinear partial differential equations via Hirota bilinear forms; citation_author=WX Ma, Y Zhou; citation_volume=264; citation_publication_date=2018; citation_pages=2633-2659; citation_doi=10.1016/j.jde.2017.10.033; citation_id=CR21
citation_journal_title=J. Geom. Phys.; citation_title=Abundant lumps and their interaction solutions of (3+1)-dimensional linear PDEs; citation_author=WX Ma; citation_volume=133; citation_publication_date=2018; citation_pages=10-16; citation_doi=10.1016/j.geomphys.2018.07.003; citation_id=CR22
citation_journal_title=Mod. Phys. Lett. B; citation_title=Lump and interaction solutions to linear PDEs in 2+1 dimensions via symbolic computation; citation_author=WX Ma; citation_volume=33; citation_issue=36; citation_publication_date=2019; citation_pages=1950457; citation_doi=10.1142/S0217984919504578; citation_id=CR23
citation_journal_title=Pramana-J. Phys.; citation_title=Lump solutions with higher-order rational dispersion relations; citation_author=WX Ma, LQ Zhang; citation_volume=94; citation_publication_date=2020; citation_pages=43; citation_doi=10.1007/s12043-020-1918-9; citation_id=CR24
citation_journal_title=Commun. Theor. Phys.; citation_title=Hierarchy of combined TL-RTL equations and an associated (2+1)-dimensional lattice equation; citation_author=QY Jiang, RG Zhou; citation_volume=46; citation_publication_date=2006; citation_pages=773; citation_doi=10.1088/0253-6102/46/5/002; citation_id=CR25
citation_journal_title=Anal. Math. Phys.; citation_title=The modified semi-discrete two-dimensional Toda lattice with self-consistent sources; citation_author=GHS Ge; citation_volume=9; citation_publication_date=2019; citation_pages=99-118; citation_doi=10.1007/s13324-017-0184-6; citation_id=CR26
citation_journal_title=Appl. Math. Lett.; citation_title=A vector CTL-RTL hierarchy with bi-Hamiltonian structure; citation_author=JY Zhu, RG Zhou; citation_volume=87; citation_publication_date=2019; citation_pages=154-159; citation_doi=10.1016/j.aml.2018.07.039; citation_id=CR27
citation_journal_title=Theor. Math. Phys.; citation_title=Darboux transformations and recursion operators for differential-difference equations; citation_author=F Khanizadeh, AV Mikhailov, JP Wang; citation_volume=177; citation_publication_date=2013; citation_pages=1606-1654; citation_doi=10.1007/s11232-013-0124-z; citation_id=CR28
citation_journal_title=J. Math. Phys.; citation_title=Nonlinear integrable model of Frenkel-like excitations on a ribbon of triangular lattice; citation_author=OO Vakhnenko; citation_volume=56; citation_publication_date=2015; citation_pages=033505; citation_doi=10.1063/1.4914510; citation_id=CR29
citation_journal_title=Comm. Nonlinear Sci. Numer. Simul.; citation_title=Darboux transformation of a semi-discrete coupled dispersionless integrable system; citation_author=HWA Riaz, M Hassan; citation_volume=48; citation_publication_date=2017; citation_pages=387; citation_doi=10.1016/j.cnsns.2017.01.011; citation_id=CR30
citation_journal_title=Anal. Math. Phys.; citation_title=A Darboux transformation for the Volterra lattice equation; citation_author=WX Ma; citation_volume=9; citation_publication_date=2019; citation_pages=1711-1718; citation_doi=10.1007/s13324-018-0267-z; citation_id=CR31
citation_journal_title=Chaos Solitons Fract.; citation_title=Explicit N-fold Darboux transformation and multi-soliton solutions for the (1+1)-dimensional higher-order Broer–Kaup system; citation_author=DJ Huang, SD Li, HQ Zhang; citation_volume=33; citation_publication_date=2007; citation_pages=1677-1685; citation_doi=10.1016/j.chaos.2006.03.015; citation_id=CR32
citation_journal_title=Appl. Math. Model.; citation_title=A new lattice hierarchy: Hamiltonian structures, symplectic map and N-fold Darboux transformation; citation_author=L Liu, XY Wen, DS Wang; citation_volume=67; citation_publication_date=2019; citation_pages=201-218; citation_doi=10.1016/j.apm.2018.10.030; citation_id=CR33
citation_journal_title=Appl. Math. Lett.; citation_title=N-fold Darboux transformation and discrete soliton solutions for the discrete Hirota equation; citation_author=XJ Zhao, R Guo, HQ Hao; citation_volume=75; citation_publication_date=2018; citation_pages=114-120; citation_doi=10.1016/j.aml.2017.07.002; citation_id=CR34
citation_journal_title=Rev. Math. Phys.; citation_title=Darboux transformations of integrable couplings and applications; citation_author=WX Ma, YJ Zhang; citation_volume=30; citation_publication_date=2018; citation_pages=1850003; citation_doi=10.1142/S0129055X18500034; citation_id=CR35
citation_journal_title=Front. Math. Chin.; citation_title=Interaction solutions to Hirota–Satsuma–Ito equation in (2+1)-dimensions; citation_author=WX Ma; citation_volume=14; citation_publication_date=2019; citation_pages=619; citation_doi=10.1007/s11464-019-0771-y; citation_id=CR36
citation_journal_title=Anal. Math. Phys.; citation_title=Lump-type solutions and interaction solutions in the (3+1)-dimensional potential Yu–Toda–Sasa–Fukuyama equation; citation_author=MJ Dong, SF Tian, XB Wang, TT Zhang; citation_volume=9; citation_publication_date=2019; citation_pages=1511-1523; citation_doi=10.1007/s13324-018-0258-0; citation_id=CR37