N-Acetyl Cysteine Attenuates the Sarcopenia and Muscle Apoptosis Induced by Chronic Liver Disease

Current Molecular Medicine - Tập 20 Số 1 - Trang 60-71 - 2019
Johanna Ábrigo1, Tabita Marín1, Francisco Speroni Aguirre1, Franco Tacchi1, Cristián Vilos1, Felipe Simón2, Marco Arrese3, Daniel Cabrera3, Claudio Cabello‐Verrugio1
1Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
2Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
3Departamento de Gastroenterologia, Facultad de Medicina. Pontificia Universidad Catolica de Chile, Santiago, Chile

Tóm tắt

Background: Sarcopenia is characterized by the loss of muscle mass and strength (muscle atrophy) because of aging or chronic diseases, such as chronic liver disease (CLD). Different mechanisms are involved in skeletal muscle atrophy, including decreased muscle fibre diameter and myosin heavy chain levels and increased ubiquitin–proteasome pathway activity, oxidative stress and myonuclear apoptosis. We recently found that all these mechanisms, except myonuclear apoptosis, which was not evaluated in the previous study, were involved in muscle atrophy associated with hepatotoxin 5-diethoxycarbonyl-1,4-dihydrocollidine (DDC)-induced CLD. Objective: In the present study, we evaluated the involvement of myonuclear apoptosis in CLD-associated sarcopenia and the effect of N-acetyl cysteine (NAC) treatment on muscle strength and apoptosis, using a DDC-supplemented diet-fed mouse model. Methods: Four-month-old male C57BL6 mice were fed with a standard or DDCsupplemented diet for six weeks in the absence or presence of NAC treatment. Results: Our results showed that NAC attenuated the decrease in muscle fibre diameter and muscle strength associated with CLD-induced muscle wasting in gastrocnemius (GA) muscle of DDC-supplemented diet-fed mice. In addition, in GA muscle of the mice fed with DDC-supplemented diet-induced CLD showed increased myonuclear apoptosis compared with the GA muscle of the control diet-fed mice, as evidenced by increased apoptotic nuclei number, caspase-8 and caspase-9 expression, enzymatic activity of caspase-3 and BAX/BCL-2 ratio. NAC treatment inhibited all the mechanisms associated with myonuclear apoptosis in the GA muscle. Conclusion: To our knowledge, this is the first study which reports the redox regulation of muscle strength and myonuclear apoptosis in CLD-induced sarcopenia.

Từ khóa


Tài liệu tham khảo

Dasarathy S.; Cause and management of muscle wasting in chronic liver disease. Curr Opin Gastroenterol 2016,32(3),159-165

Dasarathy S.; Merli M.; Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol 2016,65(6),1232-1244

Hayashi F.; Kaibori M.; Sakaguchi T.; Loss of skeletal muscle mass in patients with chronic liver disease is related to decrease in bone mineral density and exercise tolerance. Hepatol Res 2018,48(5),345-354

Carey E.J.; Lai J.C.; Wang C.W.; Fitness, Life Enhancement, and Exercise in Liver Transplantation Consortium. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transpl 2017,23(5),625-633

Wang C.W.; Feng S.; Covinsky K.E.; A comparison of muscle function, mass, and quality in liver transplant candidates: results from the functional assessment in liver transplantation study. Transplantation 2016,100(8),1692-1698

Li J.; Zhang K.; Chen H.; A novel coating of type IV collagen and hyaluronic acid on stent material-titanium for promoting smooth muscle cell contractile phenotype. Mater Sci Eng C 2014,38,235-243

Reiser P.J.; Current understanding of conventional and novel co-expression patterns of mammalian sarcomeric myosin heavy chains and light chains. Arch Biochem Biophys 2019,662,129-133

Campos F.; Abrigo J.; Aguirre F.; Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin-proteasome system and oxidative stress. Pflugers Arch 2018,470(10),1503-1519

Ábrigo J.; Elorza A.A.; Riedel C.A.; Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia. Oxid Med Cell Longev 2018

Abrigo J.; Rivera J.C.; Simon F.; Cabrera D.; Cabello-Verrugio C.; Transforming growth factor type beta (TGF-β) requires reactive oxygen species to induce skeletal muscle atrophy. Cell Signal 2016,28(5),366-376

Andrianjafiniony T.; Dupré-Aucouturier S.; Letexier D.; Couchoux H.; Desplanches D.; Oxidative stress, apoptosis, and proteolysis in skeletal muscle repair after unloading. Am J Physiol Cell Physiol 2010,299(2),C307-C315

Bilodeau P.A.; Coyne E.S.; Wing S.S.; The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. Am J Physiol Cell Physiol 2016,311(3),C392-C403

Campbell T.L.; Quadrilatero J.; Data on skeletal muscle apoptosis, autophagy, and morphology in mice treated with doxorubicin. Data Brief 2016,7,786-793

Elmore S.; Apoptosis: a review of programmed cell death. Toxicol Pathol 2007,35(4),495-516

Marzetti E.; Privitera G.; Simili V.; Multiple pathways to the same end: mechanisms of myonuclear apoptosis in sarcopenia of aging. ScientificWorldJournal 2010,10,340-349

Meneses C.; Morales M.G.; Abrigo J.; Simon F.; Brandan E.; Cabello-Verrugio C.; The angiotensin-(1-7)/Mas axis reduces myonuclear apoptosis during recovery from angiotensin II-induced skeletal muscle atrophy in mice. Pflugers Arch 2015,467(9),1975-1984

Sudo M.; Kano Y.; Myofiber apoptosis occurs in the inflammation and regeneration phase following eccentric contractions in rats. J Physiol Sci 2009,59(6),405-412

Briston T.; Roberts M.; Lewis S.; Mitochondrial permeability transition pore: sensitivity to opening and mechanistic dependence on substrate availability. Sci Rep 2017,7(1),10492

Loreto C.; La Rocca G.; Anzalone R.; The role of intrinsic pathway in apoptosis activation and progression in Peyronie’s disease. BioMed Res Int 2014

Nair P.; Lu M.; Petersen S.; Ashkenazi A.; Apoptosis initiation through the cell-extrinsic pathway. Methods Enzymol 2014,544,99-128

Ichiishi E.; Li X.K.; Iorio E.L.; Oxidative Stress and Diseases: Clinical Trials and Approaches. Oxid Med Cell Longev 2016

Liguori I.; Russo G.; Curcio F.; Oxidative stress, aging, and diseases. Clin Interv Aging 2018,13,757-772

Serra A.J.; Prokić M.D.; Vasconsuelo A.; Pinto J.R.; Oxidative Stress in Muscle Diseases: Current and Future Therapy. Oxid Med Cell Longev 2018

Tan S.N.; Sim S.P.; Khoo A.S.; Potential role of oxidative stress-induced apoptosis in mediating chromosomal rearrangements in nasopharyngeal carcinoma. Cell Biosci 2016,6,35

Assaly R.; de Tassigny Ad, Paradis S, Jacquin S, Berdeaux A, Morin D. Oxidative stress, mitochondrial permeability transition pore opening and cell death during hypoxia-reoxygenation in adult cardiomyocytes. Eur J Pharmacol 2012,675(1-3),6-14

Kowaltowski A.J.; Castilho R.F.; Vercesi A.E.; Mitochondrial permeability transition and oxidative stress. FEBS Lett 2001,495(1-2),12-15

Kwong J.Q.; Molkentin J.D.; Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab 2015,21(2),206-214

Whitehead N.P.; Pham C.; Gervasio O.L.; Allen D.G.; N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice. J Physiol 2008,586(7),2003-2014

Roseguini B.T.; Silva L.M.; Polotow T.G.; Barros M.P.; Souccar C.; Han S.W.; Effects of N-acetylcysteine on skeletal muscle structure and function in a mouse model of peripheral arterial insufficiency. J Vasc Surg 2015,61(3),777-786

Choi M.H.; Ow J.R.; Yang N.D.; Taneja R.; Oxidative stress-mediated skeletal muscle degeneration: molecules, mechanisms, and therapies. Oxid Med Cell Longev 2016

Fickert P.; Stöger U.; Fuchsbichler A.; A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol 2007,171(2),525-536

Márquez-Miranda V.; Abrigo J.; Rivera J.C.; The complex of PAMAM-OH dendrimer with Angiotensin (1-7) prevented the disuse-induced skeletal muscle atrophy in mice. Int J Nanomedicine 2017,12,1985-1999

Morales M.G.; Abrigo J.; Acuña M.J.; Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas. Dis Model Mech 2016,9(4),441-449

Cisternas F.; Morales M.G.; Meneses C.; Angiotensin-(1-7) decreases skeletal muscle atrophy induced by angiotensin II through a Mas receptor-dependent mechanism. Clin Sci (Lond) 2015,128(5),307-319

Abrigo J.; Rivera J.C.; Aravena J.; High fat diet-induced skeletal muscle wasting is decreased by mesenchymal stem cells administration: implications on oxidative stress, ubiquitin proteasome pathway activation, and myonuclear apoptosis. Oxid Med Cell Longev 2016

Hao Y.; Jackson J.R.; Wang Y.; Edens N.; Pereira S.L.; Alway S.E.; β-Hydroxy-β-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats. Am J Physiol Regul Integr Comp Physiol 2011,301(3),R701-R715

Allen D.L.; Linderman J.K.; Roy R.R.; Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. Am J Physiol 1997,273(2 Pt 1),C579-C587

Dirks A.J.; Leeuwenburgh C.; The role of apoptosis in age-related skeletal muscle atrophy. Sports Med 2005,35(6),473-483

Marzetti E.; Calvani R.; Bernabei R.; Leeuwenburgh C.; Apoptosis in skeletal myocytes: a potential target for interventions against sarcopenia and physical frailty - a mini-review. Gerontology 2012,58(2),99-106

Marzetti E.; Lawler J.M.; Hiona A.; Manini T.; Seo A.Y.; Leeuwenburgh C.; Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle. Free Radic Biol Med 2008,44(2),160-168

Marzetti E.; Wohlgemuth S.E.; Lees H.A.; Chung H.Y.; Giovannini S.; Leeuwenburgh C.; Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle. Mech Ageing Dev 2008,129(9),542-549

Li L.F.; Liu Y.Y.; Chen N.H.; Attenuation of ventilation-induced diaphragm dysfunction through toll-like receptor 4 and nuclear factor-κB in a murine endotoxemia model. Lab Invest 2018,98(9),1170-1183

McClung J.M.; Kavazis A.N.; DeRuisseau K.C.; Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation-induced atrophy. Am J Respir Crit Care Med 2007,175(2),150-159

Simic G.; Seso-Simic D.; Lucassen P.J.; Ultrastructural analysis and TUNEL demonstrate motor neuron apoptosis in Werdnig-Hoffmann disease. J Neuropathol Exp Neurol 2000,59(5),398-407

Fidziańska A.; Suicide muscle cell programme-apoptosis. Ultrastructural study. Folia Neuropathol 2002,40(1),27-32

Min K.; Lawan A.; Bennett A.M.; Loss of MKP-5 promotes myofiber survival by activating STAT3/Bcl-2 signaling during regenerative myogenesis. Skelet Muscle 2017,7(1),21

Toshikuni N.; Arisawa T.; Tsutsumi M.; Nutrition and exercise in the management of liver cirrhosis. World J Gastroenterol 2014,20(23),7286-7297

Pisano G.; Lombardi R.; Fracanzani A.L.; Vascular damage in patients with nonalcoholic fatty liver disease: possible role of iron and ferritin. Int J Mol Sci 2016,17(5)

Brito-Azevedo A.; Perez R.M.; Maranhão P.A.; Organ dysfunction in cirrhosis: a mechanism involving the microcirculation. Eur J Gastroenterol Hepatol 2019,31(5),618-625