N-Acetyl Cysteine Attenuates the Sarcopenia and Muscle Apoptosis Induced by Chronic Liver Disease
Tóm tắt
Từ khóa
Tài liệu tham khảo
Dasarathy S.; Cause and management of muscle wasting in chronic liver disease. Curr Opin Gastroenterol 2016,32(3),159-165
Dasarathy S.; Merli M.; Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol 2016,65(6),1232-1244
Hayashi F.; Kaibori M.; Sakaguchi T.; Loss of skeletal muscle mass in patients with chronic liver disease is related to decrease in bone mineral density and exercise tolerance. Hepatol Res 2018,48(5),345-354
Carey E.J.; Lai J.C.; Wang C.W.; Fitness, Life Enhancement, and Exercise in Liver Transplantation Consortium. A multicenter study to define sarcopenia in patients with end-stage liver disease. Liver Transpl 2017,23(5),625-633
Wang C.W.; Feng S.; Covinsky K.E.; A comparison of muscle function, mass, and quality in liver transplant candidates: results from the functional assessment in liver transplantation study. Transplantation 2016,100(8),1692-1698
Li J.; Zhang K.; Chen H.; A novel coating of type IV collagen and hyaluronic acid on stent material-titanium for promoting smooth muscle cell contractile phenotype. Mater Sci Eng C 2014,38,235-243
Reiser P.J.; Current understanding of conventional and novel co-expression patterns of mammalian sarcomeric myosin heavy chains and light chains. Arch Biochem Biophys 2019,662,129-133
Campos F.; Abrigo J.; Aguirre F.; Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin-proteasome system and oxidative stress. Pflugers Arch 2018,470(10),1503-1519
Ábrigo J.; Elorza A.A.; Riedel C.A.; Role of Oxidative Stress as Key Regulator of Muscle Wasting during Cachexia. Oxid Med Cell Longev 2018
Abrigo J.; Rivera J.C.; Simon F.; Cabrera D.; Cabello-Verrugio C.; Transforming growth factor type beta (TGF-β) requires reactive oxygen species to induce skeletal muscle atrophy. Cell Signal 2016,28(5),366-376
Andrianjafiniony T.; Dupré-Aucouturier S.; Letexier D.; Couchoux H.; Desplanches D.; Oxidative stress, apoptosis, and proteolysis in skeletal muscle repair after unloading. Am J Physiol Cell Physiol 2010,299(2),C307-C315
Bilodeau P.A.; Coyne E.S.; Wing S.S.; The ubiquitin proteasome system in atrophying skeletal muscle: roles and regulation. Am J Physiol Cell Physiol 2016,311(3),C392-C403
Campbell T.L.; Quadrilatero J.; Data on skeletal muscle apoptosis, autophagy, and morphology in mice treated with doxorubicin. Data Brief 2016,7,786-793
Marzetti E.; Privitera G.; Simili V.; Multiple pathways to the same end: mechanisms of myonuclear apoptosis in sarcopenia of aging. ScientificWorldJournal 2010,10,340-349
Meneses C.; Morales M.G.; Abrigo J.; Simon F.; Brandan E.; Cabello-Verrugio C.; The angiotensin-(1-7)/Mas axis reduces myonuclear apoptosis during recovery from angiotensin II-induced skeletal muscle atrophy in mice. Pflugers Arch 2015,467(9),1975-1984
Sudo M.; Kano Y.; Myofiber apoptosis occurs in the inflammation and regeneration phase following eccentric contractions in rats. J Physiol Sci 2009,59(6),405-412
Briston T.; Roberts M.; Lewis S.; Mitochondrial permeability transition pore: sensitivity to opening and mechanistic dependence on substrate availability. Sci Rep 2017,7(1),10492
Loreto C.; La Rocca G.; Anzalone R.; The role of intrinsic pathway in apoptosis activation and progression in Peyronie’s disease. BioMed Res Int 2014
Nair P.; Lu M.; Petersen S.; Ashkenazi A.; Apoptosis initiation through the cell-extrinsic pathway. Methods Enzymol 2014,544,99-128
Ichiishi E.; Li X.K.; Iorio E.L.; Oxidative Stress and Diseases: Clinical Trials and Approaches. Oxid Med Cell Longev 2016
Liguori I.; Russo G.; Curcio F.; Oxidative stress, aging, and diseases. Clin Interv Aging 2018,13,757-772
Serra A.J.; Prokić M.D.; Vasconsuelo A.; Pinto J.R.; Oxidative Stress in Muscle Diseases: Current and Future Therapy. Oxid Med Cell Longev 2018
Tan S.N.; Sim S.P.; Khoo A.S.; Potential role of oxidative stress-induced apoptosis in mediating chromosomal rearrangements in nasopharyngeal carcinoma. Cell Biosci 2016,6,35
Assaly R.; de Tassigny Ad, Paradis S, Jacquin S, Berdeaux A, Morin D. Oxidative stress, mitochondrial permeability transition pore opening and cell death during hypoxia-reoxygenation in adult cardiomyocytes. Eur J Pharmacol 2012,675(1-3),6-14
Kowaltowski A.J.; Castilho R.F.; Vercesi A.E.; Mitochondrial permeability transition and oxidative stress. FEBS Lett 2001,495(1-2),12-15
Kwong J.Q.; Molkentin J.D.; Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab 2015,21(2),206-214
Whitehead N.P.; Pham C.; Gervasio O.L.; Allen D.G.; N-Acetylcysteine ameliorates skeletal muscle pathophysiology in mdx mice. J Physiol 2008,586(7),2003-2014
Roseguini B.T.; Silva L.M.; Polotow T.G.; Barros M.P.; Souccar C.; Han S.W.; Effects of N-acetylcysteine on skeletal muscle structure and function in a mouse model of peripheral arterial insufficiency. J Vasc Surg 2015,61(3),777-786
Choi M.H.; Ow J.R.; Yang N.D.; Taneja R.; Oxidative stress-mediated skeletal muscle degeneration: molecules, mechanisms, and therapies. Oxid Med Cell Longev 2016
Fickert P.; Stöger U.; Fuchsbichler A.; A new xenobiotic-induced mouse model of sclerosing cholangitis and biliary fibrosis. Am J Pathol 2007,171(2),525-536
Márquez-Miranda V.; Abrigo J.; Rivera J.C.; The complex of PAMAM-OH dendrimer with Angiotensin (1-7) prevented the disuse-induced skeletal muscle atrophy in mice. Int J Nanomedicine 2017,12,1985-1999
Morales M.G.; Abrigo J.; Acuña M.J.; Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas. Dis Model Mech 2016,9(4),441-449
Cisternas F.; Morales M.G.; Meneses C.; Angiotensin-(1-7) decreases skeletal muscle atrophy induced by angiotensin II through a Mas receptor-dependent mechanism. Clin Sci (Lond) 2015,128(5),307-319
Abrigo J.; Rivera J.C.; Aravena J.; High fat diet-induced skeletal muscle wasting is decreased by mesenchymal stem cells administration: implications on oxidative stress, ubiquitin proteasome pathway activation, and myonuclear apoptosis. Oxid Med Cell Longev 2016
Hao Y.; Jackson J.R.; Wang Y.; Edens N.; Pereira S.L.; Alway S.E.; β-Hydroxy-β-methylbutyrate reduces myonuclear apoptosis during recovery from hind limb suspension-induced muscle fiber atrophy in aged rats. Am J Physiol Regul Integr Comp Physiol 2011,301(3),R701-R715
Allen D.L.; Linderman J.K.; Roy R.R.; Apoptosis: a mechanism contributing to remodeling of skeletal muscle in response to hindlimb unweighting. Am J Physiol 1997,273(2 Pt 1),C579-C587
Dirks A.J.; Leeuwenburgh C.; The role of apoptosis in age-related skeletal muscle atrophy. Sports Med 2005,35(6),473-483
Marzetti E.; Calvani R.; Bernabei R.; Leeuwenburgh C.; Apoptosis in skeletal myocytes: a potential target for interventions against sarcopenia and physical frailty - a mini-review. Gerontology 2012,58(2),99-106
Marzetti E.; Lawler J.M.; Hiona A.; Manini T.; Seo A.Y.; Leeuwenburgh C.; Modulation of age-induced apoptotic signaling and cellular remodeling by exercise and calorie restriction in skeletal muscle. Free Radic Biol Med 2008,44(2),160-168
Marzetti E.; Wohlgemuth S.E.; Lees H.A.; Chung H.Y.; Giovannini S.; Leeuwenburgh C.; Age-related activation of mitochondrial caspase-independent apoptotic signaling in rat gastrocnemius muscle. Mech Ageing Dev 2008,129(9),542-549
Li L.F.; Liu Y.Y.; Chen N.H.; Attenuation of ventilation-induced diaphragm dysfunction through toll-like receptor 4 and nuclear factor-κB in a murine endotoxemia model. Lab Invest 2018,98(9),1170-1183
McClung J.M.; Kavazis A.N.; DeRuisseau K.C.; Caspase-3 regulation of diaphragm myonuclear domain during mechanical ventilation-induced atrophy. Am J Respir Crit Care Med 2007,175(2),150-159
Simic G.; Seso-Simic D.; Lucassen P.J.; Ultrastructural analysis and TUNEL demonstrate motor neuron apoptosis in Werdnig-Hoffmann disease. J Neuropathol Exp Neurol 2000,59(5),398-407
Fidziańska A.; Suicide muscle cell programme-apoptosis. Ultrastructural study. Folia Neuropathol 2002,40(1),27-32
Min K.; Lawan A.; Bennett A.M.; Loss of MKP-5 promotes myofiber survival by activating STAT3/Bcl-2 signaling during regenerative myogenesis. Skelet Muscle 2017,7(1),21
Toshikuni N.; Arisawa T.; Tsutsumi M.; Nutrition and exercise in the management of liver cirrhosis. World J Gastroenterol 2014,20(23),7286-7297
Pisano G.; Lombardi R.; Fracanzani A.L.; Vascular damage in patients with nonalcoholic fatty liver disease: possible role of iron and ferritin. Int J Mol Sci 2016,17(5)