Myoblast fusion: Experimental systems and cellular mechanisms
Tài liệu tham khảo
Frontera, 2015, Skeletal muscle: a brief review of structure and function, Calcif. Tissue Int., 96, 183, 10.1007/s00223-014-9915-y
Mintz, 1967, Normal mammalian muscle differentiation and gene control of isocitrate dehydrogenase synthesis, Proc. Natl. Acad. Sci. U. S. A., 58, 592, 10.1073/pnas.58.2.592
Capers, 1960, Multinucleation of skeletal muscle in vitro, J. Biophys. Biochem. Cytol., 7, 559, 10.1083/jcb.7.3.559
Abmayr, 2012, Myoblast fusion: lessons from flies and mice, Development, 139, 641, 10.1242/dev.068353
Kim, 2015, Mechanisms of myoblast fusion during muscle development, Curr. Opin. Genet. Dev., 32, 162, 10.1016/j.gde.2015.03.006
Onel, 2014, Tethering membrane fusion: common and different players in myoblasts and at the synapse, J. Neurogenet., 28, 302, 10.3109/01677063.2014.936014
Rodal, 2015, Drosophila comes of age as a model system for understanding the function of cytoskeletal proteins in cells, tissues, and organisms, Cytoskeleton (Hoboken), 72, 207, 10.1002/cm.21228
Haralalka, 2010, Myoblast fusion in Drosophila, Exp. Cell Res., 316, 3007, 10.1016/j.yexcr.2010.05.018
Bate, 1990, The embryonic development of larval muscles in Drosophila, Development, 110, 791, 10.1242/dev.110.3.791
Dworak, 2002, Myoblast fusion in Drosophila, Bioessays, 24, 591, 10.1002/bies.10115
Jansen, 2008, Molecular control of mammalian myoblast fusion, Methods Mol. Biol., 475, 115, 10.1007/978-1-59745-250-2_7
Schulman, 2015, Morphogenesis of the somatic musculature in Drosophila melanogaster, Wiley Interdiscip. Rev. Dev. Biol., 4, 313, 10.1002/wdev.180
Dobi, 2015, Specification of the somatic musculature in Drosophila, Wiley Interdiscip. Rev. Dev. Biol., 4, 357, 10.1002/wdev.182
Rau, 2001, rolling pebbles (rols) is required in Drosophila muscle precursors for recruitment of myoblasts for fusion, Development, 128, 5061, 10.1242/dev.128.24.5061
Haralalka, 2014, Live imaging provides new insights on dynamic F-actin filopodia and differential endocytosis during myoblast fusion in Drosophila, PLoS One, 9, e114126, 10.1371/journal.pone.0114126
Morriss, 2012, Analysis of skeletal muscle development in Drosophila, Methods Mol. Biol., 798, 127, 10.1007/978-1-61779-343-1_8
Schnorrer, 2010, Systematic genetic analysis of muscle morphogenesis and function in Drosophila, Nature, 464, 287, 10.1038/nature08799
Weitkunat, 2014, A guide to study Drosophila muscle biology, Methods, 68, 2, 10.1016/j.ymeth.2014.02.037
Dickinson, 2006, Insect flight, Cur. Biol., 16, R309, 10.1016/j.cub.2006.03.087
Roy, 1999, Muscle pattern diversification in Drosophila: the story of imaginal myogenesis, Bioessays, 21, 486, 10.1002/(SICI)1521-1878(199906)21:6<486::AID-BIES5>3.0.CO;2-M
D. Dutta, K. VijayRaghavan, Metamorphosis and the formation of the adult musculature, In: Muscle Development in Drosophila, (2006) 125–142.
Fernandes, 1999, Development of the adult neuromuscular system, Int. Rev. Neurobiol., 43, 221, 10.1016/S0074-7742(08)60547-4
Atreya, 2008, Founder cells regulate fiber number but not fiber formation during adult myogenesis in Drosophila, Dev. Biol., 321, 123, 10.1016/j.ydbio.2008.06.023
Brunetti, 2015, Identification of singles bar as a direct transcriptional target of Drosophila Myocyte enhancer factor-2 and a regulator of adult myoblast fusion, Dev. Biol., 401, 299, 10.1016/j.ydbio.2015.02.026
Dhanyasi, 2015, Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles, J. Cell Biol., 211, 191, 10.1083/jcb.201503005
Dutta, 2004, Founder myoblasts and fibre number during adult myogenesis in Drosophila, Development, 131, 3761, 10.1242/dev.01249
Gildor, 2012, Bidirectional Notch activation represses fusion competence in swarming adult Drosophila myoblasts, Development, 139, 4040, 10.1242/dev.077495
Mukherjee, 2011, The actin nucleator WASp is required for myoblast fusion during adult Drosophila myogenesis, Development, 138, 2347, 10.1242/dev.055012
Susic-Jung, 2012, Multinucleated smooth muscles and mononucleated as well as multinucleated striated muscles develop during establishment of the male reproductive organs of Drosophila melanogaster, Dev. Biol., 370, 86, 10.1016/j.ydbio.2012.07.022
Kuckwa, 2016, A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion, Development, 143, 329, 10.1242/dev.126730
Demarco, 2014, Investigating spermatogenesis in Drosophila melanogaster, Methods, 68, 218, 10.1016/j.ymeth.2014.04.020
Leikina, 2013, Extracellular annexins and dynamin are important for sequential steps in myoblast fusion, J. Cell Biol., 200, 109, 10.1083/jcb.201207012
Nowak, 2009, Nap1-mediated actin remodeling is essential for mammalian myoblast fusion, J. Cell Sci., 122, 3282, 10.1242/jcs.047597
Duan, 2009, Dependence of myoblast fusion on a cortical actin wall and nonmuscle myosin IIA, Dev. Biol., 325, 374, 10.1016/j.ydbio.2008.10.035
Laurin, 2008, The atypical Rac activator Dock180 (Dock1) regulates myoblast fusion in vivo, Proc. Natl. Acad. Sci. U. S. A., 105, 15446, 10.1073/pnas.0805546105
Gruenbaum-Cohen, 2012, The actin regulator N-WASp is required for muscle-cell fusion in mice, Proc. Natl. Acad. Sci. U. S. A., 109, 11211, 10.1073/pnas.1116065109
Millay, 2013, Myomaker is a membrane activator of myoblast fusion and muscle formation, Nature, 499, 301, 10.1038/nature12343
Nowotschin, 2014, Live imaging mouse embryonic development: seeing is believing and revealing, 405
de Medeiros, 2016, Light-sheet imaging of mammalian development, Semin. Cell Dev. Biol., 55, 148, 10.1016/j.semcdb.2015.11.001
Avinoam, 2011, Eukaryotic cell-cell fusion families, Curr. Top. Membr., 68, 209, 10.1016/B978-0-12-385891-7.00009-X
Podbilewicz, 2014, Virus and cell fusion mechanisms, Annu. Rev. Cell Dev. Biol., 30, 111, 10.1146/annurev-cellbio-101512-122422
Applebaum, 2015, Mechanisms of myogenic specification and patterning, Results Probl. Cell Differ., 56, 77, 10.1007/978-3-662-44608-9_4
Hirst, 2015, The avian embryo as a model system for skeletal myogenesis, Results Probl. Cell Differ., 56, 99, 10.1007/978-3-662-44608-9_5
Sieiro-Mosti, 2014, A dynamic analysis of muscle fusion in the chick embryo, Development, 141, 3605, 10.1242/dev.114546
Hamoud, 2014, G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates, Proc. Natl. Acad. Sci. U. S. A., 111, 3745, 10.1073/pnas.1313886111
Gurevich, 2015, Skeletal myogenesis in the zebrafish and its implications for muscle disease modelling, Results Probl. Cell Differ., 56, 49, 10.1007/978-3-662-44608-9_3
Roy, 2001, The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo, Genes Dev., 15, 1563, 10.1101/gad.195801
Srinivas, 2007, A conserved molecular pathway mediates myoblast fusion in insects and vertebrates, Nat. Genet., 39, 781, 10.1038/ng2055
Moore, 2007, A role for the Myoblast city homologues Dock1 and Dock5 and the adaptor proteins Crk and Crk-like in zebrafish myoblast fusion, Development, 134, 3145, 10.1242/dev.001214
Tixier, 2013, Glycolysis supports embryonic muscle growth by promoting myoblast fusion, Proc. Natl. Acad. Sci. U. S. A., 110, 18982, 10.1073/pnas.1301262110
Landemaine, 2014, Myomaker mediates fusion of fast myocytes in zebrafish embryos, Biochem. Biophys. Res. Commun., 451, 480, 10.1016/j.bbrc.2014.07.093
Powell, 2011, Jamb and jamc are essential for vertebrate myocyte fusion, PLoS Biol., 9, e1001216, 10.1371/journal.pbio.1001216
Luissint, 2014, JAM-related proteins in mucosal homeostasis and inflammation, Semin. Immunopathol., 36, 211, 10.1007/s00281-014-0421-0
Zhang, 2016, The zebrafish fast myosin light chain mylpfa:H2B-GFP transgene is a useful tool for in vivo imaging of myocyte fusion in the vertebrate embryo, Gene Expr. Patterns, 20, 106, 10.1016/j.gep.2016.02.001
Ruiz-Gomez, 2000, Drosophila dumbfounded: a myoblast attractant essential for fusion, Cell, 102, 189, 10.1016/S0092-8674(00)00024-6
Bentzinger, 2012, Building muscle: molecular regulation of myogenesis, Cold Spring Harb. Perspect. Biol., 4, 10.1101/cshperspect.a008342
Bernard, 2006, Notch pathway repression by vestigial is required to promote indirect flight muscle differentiation in Drosophila melanogaster, Dev. Biol., 295, 164, 10.1016/j.ydbio.2006.03.022
Rai, 2016, Spatio-temporal coordination of cell cycle exit, fusion and differentiation of adult muscle precursors by Drosophila Erect wing (Ewg), Mech. Dev., 10.1016/j.mod.2016.03.004
Guruharsha, 2009, The complex spatio-temporal regulation of the Drosophila myoblast attractant gene duf/kirre, PLoS One, 4, e6960, 10.1371/journal.pone.0006960
Fischbach, 2009, The irre cell recognition module (IRM) proteins, J. Neurogenet., 23, 48, 10.1080/01677060802471668
Zhuang, 2009, Sns and Kirre, the Drosophila orthologs of Nephrin and Neph1, direct adhesion, fusion and formation of a slit diaphragm-like structure in insect nephrocytes, Development, 136, 2335, 10.1242/dev.031609
Helmstadter, 2014, A brief overview on IRM function across evolution, J. Neurogenet., 28, 264, 10.3109/01677063.2014.918976
Ozkan, 2014, Extracellular architecture of the SYG-1/SYG-2 adhesion complex instructs synaptogenesis, Cell, 156, 482, 10.1016/j.cell.2014.01.004
Kesper, 2007, Myoblast fusion in Drosophila melanogaster is mediated through a fusion-restricted myogenic-adhesive structure (FuRMAS), Dev. Dyn., 236, 404, 10.1002/dvdy.21035
Kim, 2007, A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion, Dev. Cell, 12, 571, 10.1016/j.devcel.2007.02.019
Massarwa, 2007, WIP/WASp-based actin-polymerization machinery is essential for myoblast fusion in Drosophila, Dev. Cell, 12, 557, 10.1016/j.devcel.2007.01.016
Shilagardi, 2013, Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell-cell fusion, Science, 340, 359, 10.1126/science.1234781
Maartens, 2015, The many faces of cell adhesion during Drosophila muscle development, Dev. Biol., 401, 62, 10.1016/j.ydbio.2014.12.038
Przewozniak, 2013, Adhesion proteins—an impact on skeletal myoblast differentiation, PLoS One, 8, e61760, 10.1371/journal.pone.0061760
Krauss, 2010, Regulation of promyogenic signal transduction by cell-cell contact and adhesion, Exp. Cell Res., 316, 3042, 10.1016/j.yexcr.2010.05.008
Dottermusch-Heidel, 2012, The Arf-GEF Schizo/Loner regulates N-cadherin to induce fusion competence of Drosophila myoblasts, Dev. Biol., 368, 18, 10.1016/j.ydbio.2012.04.031
Langenhan, 2013, Sticky signaling-adhesion class G protein-coupled receptors take the stage, Sci. Signal., 6, re3, 10.1126/scisignal.2003825
Simundza, 2013, Adhesion G-protein-coupled receptors: elusive hybrids come of age, Cell Commun. Adhes., 20, 213, 10.3109/15419061.2013.855727
Brugnera, 2002, Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex, Nat. Cell Biol., 4, 574, 10.1038/ncb824
Erickson, 1997, Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization, J. Cell Biol., 138, 589, 10.1083/jcb.138.3.589
Haralalka, 2011, Asymmetric Mbc, active Rac1 and F-actin foci in the fusion-competent myoblasts during myoblast fusion in Drosophila, Development, 138, 1551, 10.1242/dev.057653
Geisbrecht, 2008, Drosophila ELMO/CED-12 interacts with Myoblast city to direct myoblast fusion and ommatidial organization, Dev. Biol., 314, 137, 10.1016/j.ydbio.2007.11.022
Hochreiter-Hufford, 2013, Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion, Nature, 497, 263, 10.1038/nature12135
Yu, 2013, Cell biology: death brings new life to muscle, Nature, 497, 196, 10.1038/nature12097
Chhabra, 2007, The many faces of actin: matching assembly factors with cellular structures, Nat. Cell Biol., 9, 1110, 10.1038/ncb1007-1110
Goley, 2006, The ARP2/3 complex: an actin nucleator comes of age, Nat. Rev. Mol. Cell Biol., 7, 713, 10.1038/nrm2026
Campellone, 2010, A nucleator arms race: cellular control of actin assembly, Nat. Rev. Mol. Cell Biol., 11, 237, 10.1038/nrm2867
Richardson, 2007, SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion, Development, 134, 4357, 10.1242/dev.010678
Sens, 2010, An invasive podosome-like structure promotes fusion pore formation during myoblast fusion, J. Cell Biol., 191, 1013, 10.1083/jcb.201006006
Gildor, 2009, The SCAR and WASp nucleation-promoting factors act sequentially to mediate Drosophila myoblast fusion, EMBO Rep., 10, 1043, 10.1038/embor.2009.129
Deng, 2015, The formin Diaphanous regulates myoblast fusion through actin polymerization and Arp2/3 regulation, PLoS Genet., 11, e1005381, 10.1371/journal.pgen.1005381
Bothe, 2014, PI(4,5)P2 regulates myoblast fusion through Arp2/3 regulator localization at the fusion site, Development, 141, 2289, 10.1242/dev.100743
Jin, 2011, Competition between Blown fuse and WASP for WIP binding regulates the dynamics of WASP-dependent actin polymerization in vivo, Dev. Cell, 20, 623, 10.1016/j.devcel.2011.04.007
Chen, 2011, Invasive podosomes and myoblast fusion, Curr. Top. Membr., 68, 235, 10.1016/B978-0-12-385891-7.00010-6
Onel, 2009, FuRMAS: triggering myoblast fusion in Drosophila, Dev. Dyn., 238, 1513, 10.1002/dvdy.21961
Sung, 2011, Cell-cell fusion: a new function for invadosomes, Curr. Biol., 21, R121, 10.1016/j.cub.2010.12.024
Kim, 2015, Mechanical tension drives cell membrane fusion, Dev. Cell, 32, 561, 10.1016/j.devcel.2015.01.005
Chernomordik, 2015, Myoblast fusion: playing hard to get, Dev. Cell, 32, 529, 10.1016/j.devcel.2015.02.018
Chernomordik, 2003, Protein-lipid interplay in fusion and fission of biological membranes, Annu. Rev. Biochem, 72, 175, 10.1146/annurev.biochem.72.121801.161504
Chernomordik, 2005, Membrane hemifusion: crossing a chasm in two leaps, Cell, 123, 375, 10.1016/j.cell.2005.10.015
Chernomordik, 2006, Membranes of the world unite, J. Cell Biol., 175, 201, 10.1083/jcb.200607083
Gerke, 2002, Annexins from structure to function, Physiol. Rev., 82, 331, 10.1152/physrev.00030.2001
Moss, 2004, The annexins, Genome Biol., 5, 219, 10.1186/gb-2004-5-4-219
Leikina, 2015, Annexin A1 deficiency does not affect myofiber repair but delays regeneration of injured muscles, Sci. Rep., 5, 18246, 10.1038/srep18246
Estrada, 2007, The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion, Dev. Biol., 307, 328, 10.1016/j.ydbio.2007.04.045
Sanchez-Pulido, 2002, MARVEL: a conserved domain involved in membrane apposition events, Trends Biochem. Sci., 27, 599, 10.1016/S0968-0004(02)02229-6
Raleigh, 2010, Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions, Mol. Biol. Cell, 21, 1200, 10.1091/mbc.E09-08-0734
Yaffe, 2012, The MARVEL transmembrane motif of occludin mediates oligomerization and targeting to the basolateral surface in epithelia, J. Cell Sci., 125, 3545, 10.1242/jcs.100289
Modis, 2013, Class II fusion proteins, Adv. Exp. Med. Biol., 790, 150, 10.1007/978-1-4614-7651-1_8
White, 2008, Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme, Crit. Rev. Biochem. Mol. Biol., 43, 189, 10.1080/10409230802058320
Millay, 2014, Myomaker is essential for muscle regeneration, Genes Dev., 28, 1641, 10.1101/gad.247205.114
Luo, 2015, Myomaker, regulated by MYOD, MYOG and miR-140-3p, promotes chicken myoblast fusion, Int. J. Mol. Sci., 16, 26186, 10.3390/ijms161125946
Millay, 2016, Structure-function analysis of myomaker domains required for myoblast fusion, Proc. Natl. Acad. Sci. U. S. A., 113, 2116, 10.1073/pnas.1600101113
Doberstein, 1997, Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the prefusion complex, J. Cell Biol., 136, 1249, 10.1083/jcb.136.6.1249
Sosinsky, 2008, The combination of chemical fixation procedures with high pressure freezing and freeze substitution preserves highly labile tissue ultrastructure for electron tomography applications, J. Struct. Biol., 161, 359, 10.1016/j.jsb.2007.09.002