Myoblast fusion: Experimental systems and cellular mechanisms

Seminars in Cell & Developmental Biology - Tập 60 - Trang 112-120 - 2016
Eyal D. Schejter1
1Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel

Tài liệu tham khảo

Frontera, 2015, Skeletal muscle: a brief review of structure and function, Calcif. Tissue Int., 96, 183, 10.1007/s00223-014-9915-y Mintz, 1967, Normal mammalian muscle differentiation and gene control of isocitrate dehydrogenase synthesis, Proc. Natl. Acad. Sci. U. S. A., 58, 592, 10.1073/pnas.58.2.592 Capers, 1960, Multinucleation of skeletal muscle in vitro, J. Biophys. Biochem. Cytol., 7, 559, 10.1083/jcb.7.3.559 Abmayr, 2012, Myoblast fusion: lessons from flies and mice, Development, 139, 641, 10.1242/dev.068353 Kim, 2015, Mechanisms of myoblast fusion during muscle development, Curr. Opin. Genet. Dev., 32, 162, 10.1016/j.gde.2015.03.006 Onel, 2014, Tethering membrane fusion: common and different players in myoblasts and at the synapse, J. Neurogenet., 28, 302, 10.3109/01677063.2014.936014 Rodal, 2015, Drosophila comes of age as a model system for understanding the function of cytoskeletal proteins in cells, tissues, and organisms, Cytoskeleton (Hoboken), 72, 207, 10.1002/cm.21228 Haralalka, 2010, Myoblast fusion in Drosophila, Exp. Cell Res., 316, 3007, 10.1016/j.yexcr.2010.05.018 Bate, 1990, The embryonic development of larval muscles in Drosophila, Development, 110, 791, 10.1242/dev.110.3.791 Dworak, 2002, Myoblast fusion in Drosophila, Bioessays, 24, 591, 10.1002/bies.10115 Jansen, 2008, Molecular control of mammalian myoblast fusion, Methods Mol. Biol., 475, 115, 10.1007/978-1-59745-250-2_7 Schulman, 2015, Morphogenesis of the somatic musculature in Drosophila melanogaster, Wiley Interdiscip. Rev. Dev. Biol., 4, 313, 10.1002/wdev.180 Dobi, 2015, Specification of the somatic musculature in Drosophila, Wiley Interdiscip. Rev. Dev. Biol., 4, 357, 10.1002/wdev.182 Rau, 2001, rolling pebbles (rols) is required in Drosophila muscle precursors for recruitment of myoblasts for fusion, Development, 128, 5061, 10.1242/dev.128.24.5061 Haralalka, 2014, Live imaging provides new insights on dynamic F-actin filopodia and differential endocytosis during myoblast fusion in Drosophila, PLoS One, 9, e114126, 10.1371/journal.pone.0114126 Morriss, 2012, Analysis of skeletal muscle development in Drosophila, Methods Mol. Biol., 798, 127, 10.1007/978-1-61779-343-1_8 Schnorrer, 2010, Systematic genetic analysis of muscle morphogenesis and function in Drosophila, Nature, 464, 287, 10.1038/nature08799 Weitkunat, 2014, A guide to study Drosophila muscle biology, Methods, 68, 2, 10.1016/j.ymeth.2014.02.037 Dickinson, 2006, Insect flight, Cur. Biol., 16, R309, 10.1016/j.cub.2006.03.087 Roy, 1999, Muscle pattern diversification in Drosophila: the story of imaginal myogenesis, Bioessays, 21, 486, 10.1002/(SICI)1521-1878(199906)21:6<486::AID-BIES5>3.0.CO;2-M D. Dutta, K. VijayRaghavan, Metamorphosis and the formation of the adult musculature, In: Muscle Development in Drosophila, (2006) 125–142. Fernandes, 1999, Development of the adult neuromuscular system, Int. Rev. Neurobiol., 43, 221, 10.1016/S0074-7742(08)60547-4 Atreya, 2008, Founder cells regulate fiber number but not fiber formation during adult myogenesis in Drosophila, Dev. Biol., 321, 123, 10.1016/j.ydbio.2008.06.023 Brunetti, 2015, Identification of singles bar as a direct transcriptional target of Drosophila Myocyte enhancer factor-2 and a regulator of adult myoblast fusion, Dev. Biol., 401, 299, 10.1016/j.ydbio.2015.02.026 Dhanyasi, 2015, Surface apposition and multiple cell contacts promote myoblast fusion in Drosophila flight muscles, J. Cell Biol., 211, 191, 10.1083/jcb.201503005 Dutta, 2004, Founder myoblasts and fibre number during adult myogenesis in Drosophila, Development, 131, 3761, 10.1242/dev.01249 Gildor, 2012, Bidirectional Notch activation represses fusion competence in swarming adult Drosophila myoblasts, Development, 139, 4040, 10.1242/dev.077495 Mukherjee, 2011, The actin nucleator WASp is required for myoblast fusion during adult Drosophila myogenesis, Development, 138, 2347, 10.1242/dev.055012 Susic-Jung, 2012, Multinucleated smooth muscles and mononucleated as well as multinucleated striated muscles develop during establishment of the male reproductive organs of Drosophila melanogaster, Dev. Biol., 370, 86, 10.1016/j.ydbio.2012.07.022 Kuckwa, 2016, A new level of plasticity: Drosophila smooth-like testes muscles compensate failure of myoblast fusion, Development, 143, 329, 10.1242/dev.126730 Demarco, 2014, Investigating spermatogenesis in Drosophila melanogaster, Methods, 68, 218, 10.1016/j.ymeth.2014.04.020 Leikina, 2013, Extracellular annexins and dynamin are important for sequential steps in myoblast fusion, J. Cell Biol., 200, 109, 10.1083/jcb.201207012 Nowak, 2009, Nap1-mediated actin remodeling is essential for mammalian myoblast fusion, J. Cell Sci., 122, 3282, 10.1242/jcs.047597 Duan, 2009, Dependence of myoblast fusion on a cortical actin wall and nonmuscle myosin IIA, Dev. Biol., 325, 374, 10.1016/j.ydbio.2008.10.035 Laurin, 2008, The atypical Rac activator Dock180 (Dock1) regulates myoblast fusion in vivo, Proc. Natl. Acad. Sci. U. S. A., 105, 15446, 10.1073/pnas.0805546105 Gruenbaum-Cohen, 2012, The actin regulator N-WASp is required for muscle-cell fusion in mice, Proc. Natl. Acad. Sci. U. S. A., 109, 11211, 10.1073/pnas.1116065109 Millay, 2013, Myomaker is a membrane activator of myoblast fusion and muscle formation, Nature, 499, 301, 10.1038/nature12343 Nowotschin, 2014, Live imaging mouse embryonic development: seeing is believing and revealing, 405 de Medeiros, 2016, Light-sheet imaging of mammalian development, Semin. Cell Dev. Biol., 55, 148, 10.1016/j.semcdb.2015.11.001 Avinoam, 2011, Eukaryotic cell-cell fusion families, Curr. Top. Membr., 68, 209, 10.1016/B978-0-12-385891-7.00009-X Podbilewicz, 2014, Virus and cell fusion mechanisms, Annu. Rev. Cell Dev. Biol., 30, 111, 10.1146/annurev-cellbio-101512-122422 Applebaum, 2015, Mechanisms of myogenic specification and patterning, Results Probl. Cell Differ., 56, 77, 10.1007/978-3-662-44608-9_4 Hirst, 2015, The avian embryo as a model system for skeletal myogenesis, Results Probl. Cell Differ., 56, 99, 10.1007/978-3-662-44608-9_5 Sieiro-Mosti, 2014, A dynamic analysis of muscle fusion in the chick embryo, Development, 141, 3605, 10.1242/dev.114546 Hamoud, 2014, G-protein coupled receptor BAI3 promotes myoblast fusion in vertebrates, Proc. Natl. Acad. Sci. U. S. A., 111, 3745, 10.1073/pnas.1313886111 Gurevich, 2015, Skeletal myogenesis in the zebrafish and its implications for muscle disease modelling, Results Probl. Cell Differ., 56, 49, 10.1007/978-3-662-44608-9_3 Roy, 2001, The u-boot mutation identifies a Hedgehog-regulated myogenic switch for fiber-type diversification in the zebrafish embryo, Genes Dev., 15, 1563, 10.1101/gad.195801 Srinivas, 2007, A conserved molecular pathway mediates myoblast fusion in insects and vertebrates, Nat. Genet., 39, 781, 10.1038/ng2055 Moore, 2007, A role for the Myoblast city homologues Dock1 and Dock5 and the adaptor proteins Crk and Crk-like in zebrafish myoblast fusion, Development, 134, 3145, 10.1242/dev.001214 Tixier, 2013, Glycolysis supports embryonic muscle growth by promoting myoblast fusion, Proc. Natl. Acad. Sci. U. S. A., 110, 18982, 10.1073/pnas.1301262110 Landemaine, 2014, Myomaker mediates fusion of fast myocytes in zebrafish embryos, Biochem. Biophys. Res. Commun., 451, 480, 10.1016/j.bbrc.2014.07.093 Powell, 2011, Jamb and jamc are essential for vertebrate myocyte fusion, PLoS Biol., 9, e1001216, 10.1371/journal.pbio.1001216 Luissint, 2014, JAM-related proteins in mucosal homeostasis and inflammation, Semin. Immunopathol., 36, 211, 10.1007/s00281-014-0421-0 Zhang, 2016, The zebrafish fast myosin light chain mylpfa:H2B-GFP transgene is a useful tool for in vivo imaging of myocyte fusion in the vertebrate embryo, Gene Expr. Patterns, 20, 106, 10.1016/j.gep.2016.02.001 Ruiz-Gomez, 2000, Drosophila dumbfounded: a myoblast attractant essential for fusion, Cell, 102, 189, 10.1016/S0092-8674(00)00024-6 Bentzinger, 2012, Building muscle: molecular regulation of myogenesis, Cold Spring Harb. Perspect. Biol., 4, 10.1101/cshperspect.a008342 Bernard, 2006, Notch pathway repression by vestigial is required to promote indirect flight muscle differentiation in Drosophila melanogaster, Dev. Biol., 295, 164, 10.1016/j.ydbio.2006.03.022 Rai, 2016, Spatio-temporal coordination of cell cycle exit, fusion and differentiation of adult muscle precursors by Drosophila Erect wing (Ewg), Mech. Dev., 10.1016/j.mod.2016.03.004 Guruharsha, 2009, The complex spatio-temporal regulation of the Drosophila myoblast attractant gene duf/kirre, PLoS One, 4, e6960, 10.1371/journal.pone.0006960 Fischbach, 2009, The irre cell recognition module (IRM) proteins, J. Neurogenet., 23, 48, 10.1080/01677060802471668 Zhuang, 2009, Sns and Kirre, the Drosophila orthologs of Nephrin and Neph1, direct adhesion, fusion and formation of a slit diaphragm-like structure in insect nephrocytes, Development, 136, 2335, 10.1242/dev.031609 Helmstadter, 2014, A brief overview on IRM function across evolution, J. Neurogenet., 28, 264, 10.3109/01677063.2014.918976 Ozkan, 2014, Extracellular architecture of the SYG-1/SYG-2 adhesion complex instructs synaptogenesis, Cell, 156, 482, 10.1016/j.cell.2014.01.004 Kesper, 2007, Myoblast fusion in Drosophila melanogaster is mediated through a fusion-restricted myogenic-adhesive structure (FuRMAS), Dev. Dyn., 236, 404, 10.1002/dvdy.21035 Kim, 2007, A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion, Dev. Cell, 12, 571, 10.1016/j.devcel.2007.02.019 Massarwa, 2007, WIP/WASp-based actin-polymerization machinery is essential for myoblast fusion in Drosophila, Dev. Cell, 12, 557, 10.1016/j.devcel.2007.01.016 Shilagardi, 2013, Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell-cell fusion, Science, 340, 359, 10.1126/science.1234781 Maartens, 2015, The many faces of cell adhesion during Drosophila muscle development, Dev. Biol., 401, 62, 10.1016/j.ydbio.2014.12.038 Przewozniak, 2013, Adhesion proteins—an impact on skeletal myoblast differentiation, PLoS One, 8, e61760, 10.1371/journal.pone.0061760 Krauss, 2010, Regulation of promyogenic signal transduction by cell-cell contact and adhesion, Exp. Cell Res., 316, 3042, 10.1016/j.yexcr.2010.05.008 Dottermusch-Heidel, 2012, The Arf-GEF Schizo/Loner regulates N-cadherin to induce fusion competence of Drosophila myoblasts, Dev. Biol., 368, 18, 10.1016/j.ydbio.2012.04.031 Langenhan, 2013, Sticky signaling-adhesion class G protein-coupled receptors take the stage, Sci. Signal., 6, re3, 10.1126/scisignal.2003825 Simundza, 2013, Adhesion G-protein-coupled receptors: elusive hybrids come of age, Cell Commun. Adhes., 20, 213, 10.3109/15419061.2013.855727 Brugnera, 2002, Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex, Nat. Cell Biol., 4, 574, 10.1038/ncb824 Erickson, 1997, Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure, and cytoskeletal organization, J. Cell Biol., 138, 589, 10.1083/jcb.138.3.589 Haralalka, 2011, Asymmetric Mbc, active Rac1 and F-actin foci in the fusion-competent myoblasts during myoblast fusion in Drosophila, Development, 138, 1551, 10.1242/dev.057653 Geisbrecht, 2008, Drosophila ELMO/CED-12 interacts with Myoblast city to direct myoblast fusion and ommatidial organization, Dev. Biol., 314, 137, 10.1016/j.ydbio.2007.11.022 Hochreiter-Hufford, 2013, Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion, Nature, 497, 263, 10.1038/nature12135 Yu, 2013, Cell biology: death brings new life to muscle, Nature, 497, 196, 10.1038/nature12097 Chhabra, 2007, The many faces of actin: matching assembly factors with cellular structures, Nat. Cell Biol., 9, 1110, 10.1038/ncb1007-1110 Goley, 2006, The ARP2/3 complex: an actin nucleator comes of age, Nat. Rev. Mol. Cell Biol., 7, 713, 10.1038/nrm2026 Campellone, 2010, A nucleator arms race: cellular control of actin assembly, Nat. Rev. Mol. Cell Biol., 11, 237, 10.1038/nrm2867 Richardson, 2007, SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion, Development, 134, 4357, 10.1242/dev.010678 Sens, 2010, An invasive podosome-like structure promotes fusion pore formation during myoblast fusion, J. Cell Biol., 191, 1013, 10.1083/jcb.201006006 Gildor, 2009, The SCAR and WASp nucleation-promoting factors act sequentially to mediate Drosophila myoblast fusion, EMBO Rep., 10, 1043, 10.1038/embor.2009.129 Deng, 2015, The formin Diaphanous regulates myoblast fusion through actin polymerization and Arp2/3 regulation, PLoS Genet., 11, e1005381, 10.1371/journal.pgen.1005381 Bothe, 2014, PI(4,5)P2 regulates myoblast fusion through Arp2/3 regulator localization at the fusion site, Development, 141, 2289, 10.1242/dev.100743 Jin, 2011, Competition between Blown fuse and WASP for WIP binding regulates the dynamics of WASP-dependent actin polymerization in vivo, Dev. Cell, 20, 623, 10.1016/j.devcel.2011.04.007 Chen, 2011, Invasive podosomes and myoblast fusion, Curr. Top. Membr., 68, 235, 10.1016/B978-0-12-385891-7.00010-6 Onel, 2009, FuRMAS: triggering myoblast fusion in Drosophila, Dev. Dyn., 238, 1513, 10.1002/dvdy.21961 Sung, 2011, Cell-cell fusion: a new function for invadosomes, Curr. Biol., 21, R121, 10.1016/j.cub.2010.12.024 Kim, 2015, Mechanical tension drives cell membrane fusion, Dev. Cell, 32, 561, 10.1016/j.devcel.2015.01.005 Chernomordik, 2015, Myoblast fusion: playing hard to get, Dev. Cell, 32, 529, 10.1016/j.devcel.2015.02.018 Chernomordik, 2003, Protein-lipid interplay in fusion and fission of biological membranes, Annu. Rev. Biochem, 72, 175, 10.1146/annurev.biochem.72.121801.161504 Chernomordik, 2005, Membrane hemifusion: crossing a chasm in two leaps, Cell, 123, 375, 10.1016/j.cell.2005.10.015 Chernomordik, 2006, Membranes of the world unite, J. Cell Biol., 175, 201, 10.1083/jcb.200607083 Gerke, 2002, Annexins from structure to function, Physiol. Rev., 82, 331, 10.1152/physrev.00030.2001 Moss, 2004, The annexins, Genome Biol., 5, 219, 10.1186/gb-2004-5-4-219 Leikina, 2015, Annexin A1 deficiency does not affect myofiber repair but delays regeneration of injured muscles, Sci. Rep., 5, 18246, 10.1038/srep18246 Estrada, 2007, The MARVEL domain protein, Singles Bar, is required for progression past the pre-fusion complex stage of myoblast fusion, Dev. Biol., 307, 328, 10.1016/j.ydbio.2007.04.045 Sanchez-Pulido, 2002, MARVEL: a conserved domain involved in membrane apposition events, Trends Biochem. Sci., 27, 599, 10.1016/S0968-0004(02)02229-6 Raleigh, 2010, Tight junction-associated MARVEL proteins marveld3, tricellulin, and occludin have distinct but overlapping functions, Mol. Biol. Cell, 21, 1200, 10.1091/mbc.E09-08-0734 Yaffe, 2012, The MARVEL transmembrane motif of occludin mediates oligomerization and targeting to the basolateral surface in epithelia, J. Cell Sci., 125, 3545, 10.1242/jcs.100289 Modis, 2013, Class II fusion proteins, Adv. Exp. Med. Biol., 790, 150, 10.1007/978-1-4614-7651-1_8 White, 2008, Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme, Crit. Rev. Biochem. Mol. Biol., 43, 189, 10.1080/10409230802058320 Millay, 2014, Myomaker is essential for muscle regeneration, Genes Dev., 28, 1641, 10.1101/gad.247205.114 Luo, 2015, Myomaker, regulated by MYOD, MYOG and miR-140-3p, promotes chicken myoblast fusion, Int. J. Mol. Sci., 16, 26186, 10.3390/ijms161125946 Millay, 2016, Structure-function analysis of myomaker domains required for myoblast fusion, Proc. Natl. Acad. Sci. U. S. A., 113, 2116, 10.1073/pnas.1600101113 Doberstein, 1997, Genetic analysis of myoblast fusion: blown fuse is required for progression beyond the prefusion complex, J. Cell Biol., 136, 1249, 10.1083/jcb.136.6.1249 Sosinsky, 2008, The combination of chemical fixation procedures with high pressure freezing and freeze substitution preserves highly labile tissue ultrastructure for electron tomography applications, J. Struct. Biol., 161, 359, 10.1016/j.jsb.2007.09.002