Mycotoxins aptasensing: From molecular docking to electrochemical detection of deoxynivalenol

Bioelectrochemistry - Tập 138 - Trang 107691 - 2021
Hasret Subak1,2, Giulia Selvolini2, Marina Macchiagodena2, Dilsat Ozkan-Ariksoysal3, Marco Pagliai2, Piero Procacci2, Giovanna Marrazza2,4
1Yuzuncu Yil University, Department of Analytical Chemistry, Faculty of Pharmacy, 65010, Van, Turkey
2Department of Chemistry “Ugo Schiff,” University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
3Ege University, Department of Analytical Chemistry, Faculty of Pharmacy, 35100 Bornova, Izmir, Turkey
4Istituto Nazionale Biostrutture e Biosistemi, Viale delle Medaglie D'Oro 305, 00136 Rome, Italy

Tài liệu tham khảo

Qu, 2019, Multiplex flow cytometric immunoassays for high-throughput screening of multiple mycotoxin residues in milk, Food Anal. Methods, 12, 877, 10.1007/s12161-018-01412-4 Wei, 2019, Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance, Food Chem., 300, 125176, 10.1016/j.foodchem.2019.125176 Wang, 2012, Simultaneous and rapid detection of six different mycotoxins using an immunochip, Biosens. Bioelectron., 34, 44, 10.1016/j.bios.2011.12.057 Castillo, 2015, Detection of aflatoxin B1 by aptamer-based biosensor using PAMAM dendrimers as immobilization platform, Food Control, 52, 9, 10.1016/j.foodcont.2014.12.008 Xu, 2016, Mycotoxin determination in foods using advanced sensors based on antibodies or aptamers, Toxins (Basel), 8, 239, 10.3390/toxins8080239 Evtugyn, 2019, Electrochemical immuno- and aptasensors for mycotoxin determination, Chemosensors., 7, 10, 10.3390/chemosensors7010010 Mirocha, 1998, Analysis of deoxynivalenol and its derivatives (Batch and Single Kernel) using gas chromatography/mass spectrometry, J. Agric. Food Chem., 46, 1414, 10.1021/jf970857o Turner, 2015, Analytical methods for determination of mycotoxins: an update (2009–2014), Anal. Chim. Acta, 901, 12, 10.1016/j.aca.2015.10.013 G. Bülbül, A. Hayat, S. Andreescu, Portable nanoparticle-based sensors for food safety assessment, Sensors. 15 (2015) 30736–30758. https://doi.org/10.3390/s151229826. Rotariu, 2016, Electrochemical biosensors for fast detection of food contaminants – trends and perspective, TrAC, Trends Anal. Chem., 79, 80, 10.1016/j.trac.2015.12.017 Huang, 2020, Flower-like gold nanoparticles-based immunochromatographic test strip for rapid simultaneous detection of fumonisin B1 and deoxynivalenol in Chinese traditional medicine, J. Pharm. Biomed. Anal., 177, 112895, 10.1016/j.jpba.2019.112895 Vidal, 2017, Rapid simultaneous extraction and magnetic particle-based enzyme immunoassay for the parallel determination of ochratoxin A, fumonisin B1 and deoxynivalenol mycotoxins in cereal samples, Anal. Methods, 9, 3602, 10.1039/C7AY00386B Liu, 2012, Development and practical application in the cereal food industry of a rapid and quantitative lateral flow immunoassay for deoxynivalenol, Food Control, 26, 88, 10.1016/j.foodcont.2012.01.005 Kadota, 2010, Rapid detection of nivalenol and deoxynivalenol in wheat using surface plasmon resonance immunoassay, Anal. Chim. Acta, 673, 173, 10.1016/j.aca.2010.05.028 Goud, 2018, Progress on nanostructured electrochemical sensors and their recognition elements for detection of mycotoxins: a review, Biosens. Bioelectron., 121, 205, 10.1016/j.bios.2018.08.029 Yan, 2019, Phage displayed mimotope peptide-based immunosensor for green and ultrasensitive detection of mycotoxin deoxynivalenol, J. Pharm. Biomed. Anal., 168, 94, 10.1016/j.jpba.2019.01.051 Sunday, 2015, Application on gold nanoparticles-dotted 4-nitrophenylazo graphene in a label-free impedimetric deoxynivalenol immunosensor, Sensors, 15, 3854, 10.3390/s150203854 Romanazzo, 2010, Development of a recombinant Fab-fragment based electrochemical immunosensor for deoxynivalenol detection in food samples, Biosens. Bioelectron., 25, 2615, 10.1016/j.bios.2010.04.029 Valera, 2019, Electrochemical nanoprobe-based immunosensor for deoxynivalenol mycotoxin residues analysis in wheat samples, Anal. Bioanal. Chem., 411, 1915, 10.1007/s00216-018-1538-0 Rivas, 2015, Label-free impedimetric aptasensor for ochratoxin-a detection using iridium oxide nanoparticles, Anal. Chem., 87, 5167, 10.1021/acs.analchem.5b00890 Wang, 2020, Recent advances in the development of electrochemical aptasensors for detection of heavy metals in food, Biosens. Bioelectron., 147, 111777, 10.1016/j.bios.2019.111777 Selvolini, 2019, Electrochemical enzyme-linked oligonucleotide array for aflatoxin B1 detection, Talanta, 203, 49, 10.1016/j.talanta.2019.05.044 Evtugyn, 2014, Electrochemical aptasensor based on polycarboxylic macrocycle modified with neutral red for aflatoxin B1 detection, Electroanalysis, 26, 2100, 10.1002/elan.201400328 Zhou, 2020, Recent developments in fluorescent aptasensors for detection of antibiotics, Curr. Opin. Biomed. Eng., 13, 16, 10.1016/j.cobme.2019.08.003 Danesh, 2018, Ultrasensitive detection of aflatoxin B1 and its major metabolite aflatoxin M1 using aptasensors: a review, TrAC – Trends Anal. Chem., 99, 117, 10.1016/j.trac.2017.12.009 Bostan, 2017, Ultrasensitive detection of ochratoxin A using aptasensors, Biosens. Bioelectron., 98, 168, 10.1016/j.bios.2017.06.055 Ong, 2020, Iron nanoflorets on 3D-graphene-nickel: a ‘Dandelion’ nanostructure for selective deoxynivalenol detection, Biosens. Bioelectron., 154, 10.1016/j.bios.2020.112088 Saberi, 2013, Amplified electrochemical DNA sensor based on polyaniline film and gold nanoparticles, Electroanalysis, 25, 1373, 10.1002/elan.201200434 Rapini, 2016, Acetamiprid multidetection by disposable electrochemical DNA aptasensor, Talanta, 161, 15, 10.1016/j.talanta.2016.08.026 Selvolini, 2018, DNA-based sensor for the detection of an organophosphorus pesticide: Profenofos, Sensors, 18, 2035, 10.3390/s18072035 Selvolini, 2019, Electrochemical nanocomposite single-use sensor for dopamine detection, Sensors, 19, 3097, 10.3390/s19143097 S. Wu, H. Liu, Y. Liu, Deoxynivalenol nucleic acid aptamer and application thereof, CN102559686A, 2011. https://patents.google.com/patent/CN102559686A/en. Zuker, 2003, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res., 31, 3406, 10.1093/nar/gkg595 N.R. Markham, M. Zuker, DINAMelt web server for nucleic acid melting prediction, Nucleic Acids Res. 33 (2005) W577–W581. Lipman, 1985, Rapid and sensitive protein similarity searches, Science, 227, 1435, 10.1126/science.2983426 Morris, 2009, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem., 30, 2785, 10.1002/jcc.21256