Mycosynthesis of silver and gold nanoparticles: Optimization, characterization and antimicrobial activity against human pathogens
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahmad, 2003, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Colloids Surf. B Biointerfaces, 28, 313, 10.1016/S0927-7765(02)00174-1
Álvarez-Ordóñez, 2013, Antibacterial activity and mode of action of a commercial citrus fruit extract, J. Appl. Microbiol., 115, 50, 10.1111/jam.12216
Álvarez-Ordóñez, 2010, Changes in ultrastructure and fourier transform infrared spectrum of Salmonella enterica Serovar Typhimurium cells after exposure to stress conditions, Appl. Environ. Microbiol., 76, 7598, 10.1128/AEM.00312-10
Apte, 2013, 3,4-Dihydroxy-l-phenylalanine-derived melanin from Yarrowia lipolytica mediates the synthesis of silver and gold nanostructures, J. Nanobiotechnol., 11, 2, 10.1186/1477-3155-11-2
Balakumaran, 2015
Balakumaran, 2015, Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities, Microbiol. Res., 178, 9, 10.1016/j.micres.2015.05.009
Chaloupka, 2010, Nanosilver as a new generation of nanoproduct in biomedical applications, Trends Biotechnol., 28, 580, 10.1016/j.tibtech.2010.07.006
Dar, 2013, Enhanced antimicrobial activity of silver nanoparticles synthesized by Cryphonectria sp. evaluated singly and in combination with antibiotics, Nanomedicine, 9, 105, 10.1016/j.nano.2012.04.007
Du, 2011, Rapid extra-/intracellular biosynthesis of gold nanoparticles by the fungus Penicillium sp, J. Nanoparticle Res., 13, 921, 10.1007/s11051-010-0165-2
Elbeshehy, 2015, Silver nanoparticles synthesis mediated by new isolates of Bacillus spp., nanoparticle characterization and their activity against bean yellow mosaic virus and human pathogens, Front. Microbiol., 6, 453, 10.3389/fmicb.2015.00453
Fayaz, 2010, Blue orange light emission from biogenic synthesized silver nanoparticles using Trichoderma viride, Colloids Surf. B Biointerfaces, 75, 175, 10.1016/j.colsurfb.2009.08.028
Gade, 2008, Exploitation of Aspergillus niger for synthesis of silver nanoparticles, J. Biobased Mater. Bioenergy, 2, 1, 10.1166/jbmb.2008.401
Gholami-Shabani, 2014, Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum, Appl. Biochem. Biotechnol., 172, 4084, 10.1007/s12010-014-0809-2
Gogoi, 2006, Green fluorescent protein-expressing E. coli as a model system for investigating the antimicrobial activities of silver nanoparticles, Langmuir, 22, 9322, 10.1021/la060661v
Gole, 2001, Pepsin–gold colloid conjugates: preparation, characterization, and enzymatic activity, Langmuir, 17, 1674, 10.1021/la001164w
Gupta, 2013, Biosynthesis of extracellular and intracellular gold nanoparticles by Aspergillus fumigatus and A. flavus, Antonie Van Leeuwenhoek, 103, 1113, 10.1007/s10482-013-9892-6
Han, 2010, Extracellular proteome of Aspergillus terreus grown on different carbon sources, Curr. Genet., 56, 369, 10.1007/s00294-010-0308-0
Heiligtag, 2013, The fascinating world of nanoparticle research, Mater. Today, 16, 262, 10.1016/j.mattod.2013.07.004
Ingle, 2008, Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria, Curr. Nanosci., 4, 141, 10.2174/157341308784340804
Jain, 2011, Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective, Nanoscale, 3, 635, 10.1039/C0NR00656D
Kathiresan, 2009, Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment, Colloids Surf. B Biointerfaces, 71, 133, 10.1016/j.colsurfb.2009.01.016
Kim, 2011, Antibacterial activity of silver nanoparticles against Staphylococcus aureus and E. coli, Kor. J. Microbiol. Biotechnol., 39, 77
Krishnaraj, 2012, Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 93, 95, 10.1016/j.saa.2012.03.002
Li, 2012, Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus, Int. J. Mol. Sci., 13, 466, 10.3390/ijms13010466
Lok, 2006, Proteomic analysis of the mode of antibacterial action of silver nanoparticles, J. Proteome Res., 5, 916, 10.1021/pr0504079
Lok, 2007, Silver nanoparticles: partial oxidation and antibacterial activities, J. Biol. Inorg. Chem., 12, 527, 10.1007/s00775-007-0208-z
Ma, 2011, Preparation, characterization and antibacterial properties of silver-modified graphene oxide, J. Mater. Chem., 21, 3350, 10.1039/C0JM02806A
Mishra, 2011, Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells, Appl. Microbiol. Biotechnol., 92, 617, 10.1007/s00253-011-3556-0
Mishra, 2014, Biocatalytic and antimicrobial activities of gold nanoparticles synthesized by Trichoderma sp, Bioresour. Technol., 166, 235, 10.1016/j.biortech.2014.04.085
Morones, 2005, The bactericidal effect of silver nanoparticles, Nanotechnology, 16, 2346, 10.1088/0957-4484/16/10/059
Muhsin, 2014, Mycosynthesis and characterization of silver nanoparticles and their activity against some human pathogenic bacteria, World J. Microbiol. Biotechnol., 30, 2081, 10.1007/s11274-014-1634-z
Mullai, 2013, Optimisation and enhancement of biohydrogen production using nickel nanoparticles—a novel approach, Bioresour. Technol., 141, 212, 10.1016/j.biortech.2013.03.082
Nag Raj, 1993
Narayanan, 2010, Biological synthesis of metal nanoparticles by microbes, Adv. Colloid Interface Sci., 156, 1, 10.1016/j.cis.2010.02.001
Nel, 2009, Understanding biophysicochemical interactions at the nano–bio interface, Nat. Mater., 8, 543, 10.1038/nmat2442
Pal, 2007, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? a study of the Gram-negative bacterium E. coli, Appl. Environ. Microbiol., 73, 1712, 10.1128/AEM.02218-06
Rodrigues, 2013, Biogenic antimicrobial silver nanoparticles produced by fungi, Appl. Microbiol. Biotechnol., 97, 775, 10.1007/s00253-012-4209-7
Saifuddin, 2009, Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation, E-J. Chem., 6, 61, 10.1155/2009/734264
Salunkhe, 2011, Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus, Appl. Biochem. Biotechnol., 165, 221, 10.1007/s12010-011-9245-8
Sampathkumar, 2003, High pH during trisodium phosphate treatment causes membrane damage and destruction of Salmonella enterica Serovar Enteritidis, Appl. Environ. Microbiol., 69, 122, 10.1128/AEM.69.1.122-129.2003
Sathishkumar, 2010, Immobilization of silver nanoparticles synthesized using Curcuma longa tuber powder and extract on cotton cloth for bactericidal activity, Bioresour. Technol., 101, 7958, 10.1016/j.biortech.2010.05.051
Singh, 2013, Synthesis, optimization, and characterization of silver nanoparticles from Acinetobacter calcoaceticus and their enhanced antibacterial activity when combined with antibiotics, Int. J. Nanomed., 8, 4277
Sintubin, 2011, The antibacterial activity of biogenic silver and its mode of action, Appl. Microbiol. Biotechnol., 91, 153, 10.1007/s00253-011-3225-3
Sondi, 2004, Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci., 275, 177, 10.1016/j.jcis.2004.02.012
Song, 2009, Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts, Process Biochem., 44, 1133, 10.1016/j.procbio.2009.06.005
Stirling, 2003, DNA extraction from fungi, yeast and bacteria, 53
Sutton, 1980
Tamura, 2007, MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol., 24, 1596, 10.1093/molbev/msm092
Thakkar, 2010, Biological synthesis of metallic nanoparticles, Nanomed. Nanotechnol. Biol. Med., 6, 257, 10.1016/j.nano.2009.07.002
Veerapandian, 2011, Functionalization of biomolecules on nanoparticles: specialized for antibacterial applications, Appl. Microbiol. Biotechnol., 90, 1655, 10.1007/s00253-011-3291-6
Vigneshwaran, 2007, Silver-protein (core–shell) nanoparticle production using spent mushroom substrate, Langmuir, 23, 7113, 10.1021/la063627p
White, 1990, Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, 315