Mycorrhiza Better Predict Soil Fungal Community Composition and Function than Aboveground Traits in Temperate Forest Ecosystems

Springer Science and Business Media LLC - Tập 26 - Trang 1411-1427 - 2023
Amelia A. Fitch1, Ashley K. Lang1,2, Emily D. Whalen3, Eliza M. Helmers1, Sarah G. Goldsmith1, Caitlin Hicks Pries1
1Department of Biological Sciences, Dartmouth College, Hanover, USA
2Department of Biology, Indiana University, Bloomington, USA
3Department of Natural Resources and the Environment, University of New Hampshire, Durham, USA

Tóm tắt

Forests in the northeastern US are experiencing shifts in community composition due to the northward migration of warm-adapted tree species and certain species’ declines (for example, white ash and eastern hemlock) due to invasive insects. Changes in belowground fungal communities and associated functions will inevitably follow. Therefore, we sought to investigate the relative importance of two important tree characteristics—mycorrhizal type [ectomycorrhizal (EcM) or arbuscular mycorrhizal (AM)] and leaf habit (deciduous or evergreen) on soil fungal community composition and organic matter cycling. We sampled soil in the organic and mineral horizons beneath two AM-associated (Fraxinus americana and Thuja occidentalis) and two ECM-associated tree species (Betula alleghaniensis and Tsuga canadensis), with an evergreen and deciduous species in each mycorrhizal group. To characterize fungal communities and organic matter decomposition beneath each tree species, we sequenced the ITS1 region of fungal DNA and measured the potential activity of carbon- and nitrogen-targeting extracellular enzymes. Each tree species harbored distinct fungal communities, supporting the need to consider both mycorrhizal type and leaf habit. However, between tree characteristics, mycorrhizal type better predicted fungal communities. Across fungal guilds, saprotrophic fungi were the most important group in shaping fungal community differences in soils beneath all tree species. The effect of leaf habit on carbon- and nitrogen-targeting hydrolytic enzymes depended on tree mycorrhizal association in the organic horizon, while oxidative enzyme activities were higher beneath EcM-associated trees across both soil horizons and leaf habits.

Tài liệu tham khảo

Averill C, Bhatnagar JM, Dietze MC, Pearse WD, Kivlin SN. 2019. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc Natl Acad Sci 116(46):23163–23168. https://doi.org/10.1073/pnas.1906655116. Awad A, Majcherczyk A, Schall P, Schröter K, Schöning I, Schrumpf M, Ehbrecht M, Boch S, Kahl T, Bauhus J, Seidel D, Ammer C, Fischer M, Kües U, Pena R. 2019. Ectomycorrhizal and saprotrophic soil fungal biomass are driven by different factors and vary among broadleaf and coniferous temperate forests. Soil Biol Biochem 131:9–18. https://doi.org/10.1016/j.soilbio.2018.12.014. Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw. https://doi.org/10.18637/jss.v067.i01. Bödeker ITM, Clemmensen KE, de Boer W, Martin F, Olson Å, Lindahl BD. 2014. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol 203(1):245–256. https://doi.org/10.1111/nph.12791. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS. 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evolut 24(3):127–135. https://doi.org/10.1016/j.tree.2008.10.008. Brundrett MC, Tedersoo L. 2020. Resolving the mycorrhizal status of important northern hemisphere trees. Plant Soil 454(1):3–34. https://doi.org/10.1007/s11104-020-04627-9. Buée M, Courty PE, Mignot D, Garbaye J. 2007. Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biol Biochem 39(8):1947–1955. https://doi.org/10.1016/j.soilbio.2007.02.016. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13(7):581–583. https://doi.org/10.1038/nmeth.3869. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci USA 108(Supplement 1):4516–4522. https://doi.org/10.1073/pnas.1000080107. Carrino-Kyker SR, Kluber LA, Petersen SM, Coyle KP, Hewins CR, DeForest JL, Smemo KA, Burke DJ. 2016. Mycorrhizal fungal communities respond to experimental elevation of soil pH and P availability in temperate hardwood forests. FEMS Microbiol Ecol 92(3):fiw024. https://doi.org/10.1093/femsec/fiw02. Cheeke TE, Phillips RP, Brzostek ER, Rosling A, Bever JD, Fransson P. 2017. Dominant mycorrhizal association of trees alters carbon and nutrient cycling by selecting for microbial groups with distinct enzyme function. New Phytol 214(1):432–442. https://doi.org/10.1111/nph.14343. Chen W, Koide RT, Adams TS, DeForest JL, Cheng L, Eissenstat DM. 2016. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc Natl Acad Sci 113(31):8741–8746. https://doi.org/10.1073/pnas.1601006113. Chen L, Xiang W, Wu H, Ouyang S, Lei P, Hu Y, Ge T, Ye J, Kuzyakov Y. 2019. Contrasting patterns and drivers of soil fungal communities in subtropical deciduous and evergreen broadleaved forests. Appl Microbiol Biotechnol 103(13):5421–5433. https://doi.org/10.1007/s00253-019-09867-z. Cornelissen J, Aerts R, Cerabolini B, Werger M, van der Heijden M. 2001. Carbon cycling traits of plant species are linked with mycorrhizal strategy. Oecologia 129(4):611–619. https://doi.org/10.1007/s004420100752. Cox F, Barsoum N, Lilleskov EA, Bidartondo MI. 2010. Nitrogen availability is a primary determinant of conifer mycorrhizas across complex environmental gradients. Ecol Lett 13(9):1103–1113. https://doi.org/10.1111/j.1461-0248.2010.01494.x. Crowley KF, Lovett GM. 2017. Effects of nitrogen deposition on nitrate leaching from forests of the northeastern United States will change with tree species composition. Can J For Res. https://doi.org/10.1139/cjfr-2016-0529. Curtis JD. 1946. Preliminary observations on Northern White Cedar in Maine. Ecology 27(1):23–36. https://doi.org/10.2307/1931014. de Vries FT, Caruso T. 2016. Eating from the same plate? Revisiting the role of labile carbon inputs in the soil food web. Soil Biol Biochem 102:4–9. https://doi.org/10.1016/j.soilbio.2016.06.023. DeForest JL, Snell RS. 2020. Tree growth response to shifting soil nutrient economy depends on mycorrhizal associations. New Phytol 225(6):2557–2566. https://doi.org/10.1111/nph.16299. Dijkstra FA, Cheng W. 2007. Interactions between soil and tree roots accelerate long-term soil carbon decomposition. Ecol Lett 10(11):1046–1053. https://doi.org/10.1111/j.1461-0248.2007.01095.x. Drigo B, Anderson IC, Kannangara GSK, Cairney JWG, Johnson D. 2012. Rapid incorporation of carbon from ectomycorrhizal mycelial necromass into soil fungal communities. Soil Biol Biochem 49:4–10. https://doi.org/10.1016/j.soilbio.2012.02.003. Ellison AM, Bank MS, Clinton BD, Colburn EA, Elliott K, Ford CR, Foster DR, Kloeppel BD, Knoepp JD, Lovett GM, Mohan J, Orwig DA, Rodenhouse NL, Sobczak WV, Stinson KA, Stone JK, Swan CM, Thompson J, Von Holle B, Webster JR. 2005. Loss of foundation species: consequences for the structure and dynamics of forested ecosystems. Front Ecol Environ 3(9):479–486. https://doi.org/10.1890/1540-9295(2005)003[0479:LOFSCF]2.0.CO;2. Fernandez CW, Heckman K, Kolka R, Kennedy PG. 2019. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecol Lett 22(3):498–505. https://doi.org/10.1111/ele.13209. Fernandez CW, Kennedy PG. 2016. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytol 209(4):1382–1394. https://doi.org/10.1111/nph.13648. Fernandez CW, Kennedy PG. 2018. Melanization of mycorrhizal fungal necromass structures microbial decomposer communities. J Ecol 106(2):468–479. https://doi.org/10.1111/1365-2745.12920. Fernandez CW, Koide RT. 2014. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol Biochem 77:150–157. https://doi.org/10.1016/j.soilbio.2014.06.026. Fernandez CW, See CR, Kennedy PG. 2020. Decelerated carbon cycling by ectomycorrhizal fungi is controlled by substrate quality and community composition. New Phytol 226(2):569–582. https://doi.org/10.1111/nph.16269. Finzi AC, Raymer PCL, Giasson M-A, Orwig DA. 2014. Net primary production and soil respiration in New England hemlock forests affected by the hemlock woolly adelgid. Ecosphere 5(8):art98. https://doi.org/10.1890/ES14-00102.1. Fitch AA, Lang AK, Whalen ED, Geyer K, Hicks Pries C. 2020. Fungal community, not substrate quality, drives soil microbial function in Northeastern U.S. Temperate Forests. Front For Glob Change. https://doi.org/10.3389/ffgc.2020.569945. Frey SD. 2019. Mycorrhizal fungi as mediators of soil organic matter dynamics. Ann Rev Ecol Evolut Syst 50(1):237–259. https://doi.org/10.1146/annurev-ecolsys-110617-062331. Gadgil RL, Gadgil PD. 1974. Suppression of litter decomposition by mycorrhizal roots of Pinus radiata. N Z J For Sci 5:33–41. Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118. https://doi.org/10.1111/j.1365-294x.1993.tb00005.x. German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD. 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol Biochem 43(7):1387–1397. https://doi.org/10.1016/j.soilbio.2011.03.017. Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. 2017. Microbiome datasets are compositional: and this is not optional. Front Microbiol. https://doi.org/10.3389/fmicb.2017.02224. Gorka S, Dietrich M, Mayerhofer W, Gabriel R, Wiesenbauer J, Martin V, Zheng Q, Imai B, Prommer J, Weidinger M, Schweiger P, Eichorst SA, Wagner M, Richter A, Schintlmeister A, Woebken D, Kaiser C. 2019. Rapid transfer of plant photosynthates to soil bacteria via ectomycorrhizal hyphae and its interaction with nitrogen availability. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00168. Güsewell S, Gessner MO. 2009. N:P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23(1):211–219. https://doi.org/10.1111/j.1365-2435.2008.01478.x. Heděnec P, Zheng H, Pessanha Siqueira D, Lin Q, Peng Y, Kappel Schmidt I, Guldberg Frøslev T, Kjøller R, Rousk J, Vesterdal L. 2023. Tree species traits and mycorrhizal association shape soil microbial communities via litter quality and species mediated soil properties. For Ecol Manag 527:120608. https://doi.org/10.1016/j.foreco.2022.120608. Hicks Pries CE, Lankau R, Ingham GA, Legge E, Krol O, Forrester J, Fitch A, Wurzburger N. 2022. Differences in soil organic matter between EcM- and AM-dominated forests depend on tree and fungal identity. Ecology n/a(n/a):e3929. https://doi.org/10.1002/ecy.3929 Hobbie EA, Agerer R. 2010. Nitrogen isotopes in ectomycorrhizal sporocarps correspond to belowground exploration types. Plant Soil 327(1):71–83. https://doi.org/10.1007/s11104-009-0032-z. Horsley SB, Long RP, Bailey SW, Hallett RA, Wargo PM. 2002. Health of Eastern North American sugar maple forests and factors affecting decline. North J Appl For 19(1):34–44. https://doi.org/10.1093/njaf/19.1.34. Jacob M, Weland N, Platner C, Schaefer M, Leuschner C, Thomas FM. 2009. Nutrient release from decomposing leaf litter of temperate deciduous forest trees along a gradient of increasing tree species diversity. Soil Biol Biochem 41(10):2122–2130. https://doi.org/10.1016/j.soilbio.2009.07.024. Janusz G, Pawlik A, Sulej J, Świderska-Burek U, Jarosz-Wilkołazka A, Paszczyński A. 2017. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol Rev 41(6):941–962. https://doi.org/10.1093/femsre/fux049. Jo I, Fei S, Oswalt CM, Domke GM, Phillips RP. 2019. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci Adv 5(4):eaav6358. https://doi.org/10.1126/sciadv.aav6358. Jones ME, LaCroix RE, Zeigler J, Ying SC, Nico PS, Keiluweit M. 2020. Enzymes, manganese, or iron? Drivers of oxidative organic matter decomposition in soils. Environ Sci Technol 54(21):14114–14123. https://doi.org/10.1021/acs.est.0c04212. Kaiser C, Koranda M, Kitzler B, Fuchslueger L, Schnecker J, Schweiger P, Rasche F, Zechmeister-Boltenstern S, Sessitsch A, Richter A. 2010. Belowground carbon allocation by trees drives seasonal patterns of extracellular enzyme activities by altering microbial community composition in a beech forest soil. New Phytol 187(3):843–858. https://doi.org/10.1111/j.1469-8137.2010.03321.x. Keller AB, Brzostek ER, Craig ME, Fisher JB, Phillips RP. 2021. Root-derived inputs are major contributors to soil carbon in temperate forests, but vary by mycorrhizal type. Ecol Lett 24(4):626–635. https://doi.org/10.1111/ele.13651. Keller AB, Phillips RP. 2019. Relationship between belowground carbon allocation and nitrogen uptake in saplings varies by plant mycorrhizal type. Front For Glob Change. https://doi.org/10.3389/ffgc.2019.00081. Knops JMH, Bradley KL, Wedin DA. 2002. Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5(3):454–466. https://doi.org/10.1046/j.1461-0248.2002.00332.x. Koch O, Tscherko D, Kandeler E. 2007. Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Glob Biogeochem Cycles. https://doi.org/10.1029/2007GB002983. Kohler A, Kuo A, Nagy LG, Morin E, Barry KW, Buscot F, Canbäck B, Choi C, Cichocki N, Clum A, Colpaert J, Copeland A, Costa MD, Doré J, Floudas D, Gay G, Girlanda M, Henrissat B, Herrmann S, Martin F. 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat Genet 47(4):410–415. https://doi.org/10.1038/ng.3223. Kotroczó Z, Veres Z, Fekete I, Krakomperger Z, Tóth JA, Lajtha K, Tóthmérész B. 2014. Soil enzyme activity in response to long-term organic matter manipulation. Soil Biol Biochem 70:237–243. https://doi.org/10.1016/j.soilbio.2013.12.028. Lambers H, Raven J, Shaver G, Smith S. 2008. Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evolut 23:95–103. https://doi.org/10.1016/j.tree.2007.10.008. Lauber CL, Hamady M, Knight R, Fierer N. 2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Microbiol 75(15):5111–5120. https://doi.org/10.1128/AEM.00335-09. Lekberg Y, Vasar M, Bullington LS, Sepp S-K, Antunes PM, Bunn R, Larkin BG, Öpik M. 2018. More bang for the buck? Can arbuscular mycorrhizal fungal communities be characterized adequately alongside other fungi using general fungal primers? New Phytol 220(4):971–976. Lenth RV. 2021. emmeans: Estimated Marginal Means, aka Least-Squares Means (R package version 1.7.3). https://CRAN.R-project.org/package=emmeans Liang M, Liu X, Gilbert GS, Zheng Y, Luo S, Huang F, Yu S. 2016. Adult trees cause density-dependent mortality in conspecific seedlings by regulating the frequency of pathogenic soil fungi. Ecol Lett 19(12):1448–1456. https://doi.org/10.1111/ele.12694. Lilleskov EA, Hobbie EA, Horton TR. 2011. Conservation of ectomycorrhizal fungi: exploring the linkages between functional and taxonomic responses to anthropogenic N deposition. Fungal Ecol 4(2):174–183. https://doi.org/10.1016/j.funeco.2010.09.008. Lin G, Craig ME, Jo I, Wang X, Zeng D-H, Phillips RP. 2022. Mycorrhizal associations of tree species influence soil nitrogen dynamics via effects on soil acid–base chemistry. Glob Ecol Biogeogr 31(1):168–182. https://doi.org/10.1111/geb.13418. Lindahl BD, Tunlid A. 2015. Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol 205(4):1443–1447. https://doi.org/10.1111/nph.13201. Lisov A, Belova O, Zavarzina A, Konstantinov A, Leontievsky A. 2021. The role of laccase from zygomycetous fungus mortierella elasson in humic acids degradation. Agronomy 11(11):11. https://doi.org/10.3390/agronomy11112169. Loehle C. 1988. Tree life history strategies: the role of defenses. Can J For Res 18(2):209–222. https://doi.org/10.1139/x88-032. Lu C, Kotze DJ, Setälä HM. 2021. Evergreen trees stimulate carbon accumulation in urban soils via high root production and slow litter decomposition. Sci Total Environ 774:145129. https://doi.org/10.1016/j.scitotenv.2021.145129. Maillard F, Didion M, Fauchery L, Bach C, Buée M. 2018. N-Acetylglucosaminidase activity, a functional trait of chitin degradation, is regulated differentially within two orders of ectomycorrhizal fungi: Boletales and Agaricales. Mycorrhiza 28(4):391–397. https://doi.org/10.1007/s00572-018-0833-0. Midgley MG, Sims RS. 2020. Mycorrhizal association better predicts tree effects on soil than leaf habit. Front For Glob Change 3:74. https://doi.org/10.3389/ffgc.2020.00074. Morin RS, Liebhold AM, Pugh SA, Crocker SJ. 2017. Regional assessment of emerald ash borer, Agrilus planipennis, impacts in forests of the Eastern United States. Biol Invasions 19(2):703–711. https://doi.org/10.1007/s10530-016-1296-x. Mueller KE, Hobbie SE, Oleksyn J, Reich PB, Eissenstat DM. 2012. Do evergreen and deciduous trees have different effects on net N mineralization in soil? Ecology 93(6):1463–1472. https://doi.org/10.1890/11-1906.1. Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG. 2016. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248. https://doi.org/10.1016/j.funeco.2015.06.006. Northeastern Ecosystem Research Cooperative. 2010. Compilation of foliar chemistry data for the northeastern United States and southeastern Canada [Text/xml]. KNB Data Repository. https://doi.org/10.5063/AA/NERC.12.6. Nottingham AT, Griffiths H, Chamberlain PM, Stott AW, Tanner EVJ. 2009. Soil priming by sugar and leaf-litter substrates: a link to microbial groups. Appl Soil Ecol 42(3):183–190. https://doi.org/10.1016/j.apsoil.2009.03.003. O’Brien HE, Parrent JL, Jackson JA, Moncalvo J-M, Vilgalys R. 2005. Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71(9):5544–5550. https://doi.org/10.1128/AEM.71.9.5544-5550.2005. Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H. 2020. vegan: Community Ecology Package (2.5–7). https://CRAN.R-project.org/package=vegan. Ollinger SV, Smith ML, Martin ME, Hallett RA, Goodale CL, Aber JD. 2002. Regional variation in foliar chemistry and N cycling among forests of diverse history and composition. Ecology 83(2):339–355. https://doi.org/10.1890/0012-9658(2002)083[0339:RVIFCA]2.0.CO;2. Op De Beeck M, Troein C, Peterson C, Persson P, Tunlid A. 2018. Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus. New Phytol 218(1):335–343. https://doi.org/10.1111/nph.14971. Op De Beeck M, Troein C, Siregar S, Gentile L, Abbondanza G, Peterson C, Persson P, Tunlid A. 2020. Regulation of fungal decomposition at single-cell level. ISME J 14(4):4. https://doi.org/10.1038/s41396-019-0583-9. Orwin KH, Kirschbaum MUF, John MGS, Dickie IA. 2011. Organic nutrient uptake by mycorrhizal fungi enhances ecosystem carbon storage: a model-based assessment. Ecol Lett 14(5):493–502. https://doi.org/10.1111/j.1461-0248.2011.01611.x. Osborne BB, Soper FM, Nasto MK, Bru D, Hwang S, Machmuller MB, Morales ML, Philippot L, Sullivan BW, Asner GP, Cleveland CC, Townsend AR, Porder S. 2021. Litter inputs drive patterns of soil nitrogen heterogeneity in a diverse tropical forest: results from a litter manipulation experiment. Soil Biol Biochem 158:108247. https://doi.org/10.1016/j.soilbio.2021.108247. Otsing E, Anslan S, Ambrosio E, Koricheva J, Tedersoo L. 2021. Tree species richness and neighborhood effects on ectomycorrhizal fungal richness and community structure in boreal forest. Front Microbiol. https://doi.org/10.3389/fmicb.2021.567961. Pellitier PT, Zak DR. 2018. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. New Phytol 217(1):68–73. https://doi.org/10.1111/nph.14598. Pellitier PT, Zak DR, Argiroff WA, Upchurch RA. 2021. Coupled shifts in ectomycorrhizal communities and plant uptake of organic nitrogen along a soil gradient: an isotopic perspective. Ecosystems 24(8):1976–1990. https://doi.org/10.1007/s10021-021-00628-6. Phillips RP, Brzostek E, Midgley MG. 2013. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. New Phytol 199(1):41–51. https://doi.org/10.1111/nph.12221. Prescott CE, Zabek LM, Staley CL, Kabzems R. 2000. Decomposition of broadleaf and needle litter in forests of British Columbia: influences of litter type, forest type, and litter mixtures. Can J For Res 30(11):1742–1750. https://doi.org/10.1139/x00-097. PRISM Climate Group. 2014. Oregon State University. https://prism.oregonstate.edu R Core Team. 2021. A language and environment for statistical computing. R Foundation for Statistical Computing, Version 3.2.1. https://www.R-project.org/ Reich PB. 2014. The world-wide ‘fast–slow’ plant economics spectrum: a traits manifesto. J Ecol 102(2):275–301. https://doi.org/10.1111/1365-2745.12211. Rivers AR, Weber KC, Gardner TG, Liu S, Armstrong SD. 2018. ITSxpress: software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Research 7:1418. https://doi.org/10.12688/f1000research.15704.1. Rowe EC, Evans CD, Emmett BA, Reynolds B, Helliwell RC, Coull MC, Curtis CJ. 2006. Vegetation type affects the relationship between soil carbon to nitrogen ratio and nitrogen leaching. Water Air Soil Pollut 177(1):335–347. https://doi.org/10.1007/s11270-006-9177-z. Saiya-Cork KR, Sinsabaugh RL, Zak DR. 2002. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol Biochem 34(9):1309–1315. https://doi.org/10.1016/S0038-0717(02)00074-3. Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K. 2012. Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6(9):1749–1762. https://doi.org/10.1038/ismej.2012.11. Schweigert M, Herrmann S, Miltner A, Fester T, Kästner M. 2015. Fate of ectomycorrhizal fungal biomass in a soil bioreactor system and its contribution to soil organic matter formation. Soil Biol Biochem 88:120–127. https://doi.org/10.1016/j.soilbio.2015.05.012. See CR, Luke McCormack M, Hobbie SE, Flores-Moreno H, Silver WL, Kennedy PG. 2019. Global patterns in fine root decomposition: climate, chemistry, mycorrhizal association and woodiness. Ecol Lett 22(6):946–953. https://doi.org/10.1111/ele.13248. Serna-González M, Urrego-Giraldo LE, Osorio NW, Valencia-Ríos D. 2019. Mycorrhizae: a key interaction for conservation of two endangered Magnolias from Andean forests. Plant Ecol Evolut 152(1):30–40. https://doi.org/10.5091/plecevo.2019.1398. Sharma S, Andrus R, Bergeron Y, Bogdziewicz M, Bragg DC, Brockway D, Cleavitt NL, Courbaud B, Das AJ, Dietze M, Fahey TJ, Franklin JF, Gilbert GS, Greenberg CH, Guo Q, Lambers JHR, Ibanez I, Johnstone JF, Kilner CL, Clark JS. 2022. North American tree migration paced by climate in the West, lagging in the East. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.2116691118. Siletti CE, Zeiner CA, Bhatnagar JM. 2017. Distributions of fungal melanin across species and soils. Soil Biol Biochem 113:285–293. https://doi.org/10.1016/j.soilbio.2017.05.030. Silver WL, Miya RK. 2001. Global patterns in root decomposition: comparisons of climate and litter quality effects. Oecologia 129(3):407–419. https://doi.org/10.1007/s004420100740. Sinsabaugh RL. 2010. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42(3):391–404. https://doi.org/10.1016/j.soilbio.2009.10.014. Smith GR, Wan J. 2019. Resource-ratio theory predicts mycorrhizal control of litter decomposition. New Phytol 223(3):1595–1606. https://doi.org/10.1111/nph.15884. Soil Survey Geographic (SSURGO) database for New Hampshire. 2021. Retrieved December 30, 2022, from https://www.nhgeodata.unh.edu/datasets/NHGRANIT::soil-survey-geographic-ssurgo-database-for-new-hampshire/about Sun T, Hobbie SE, Berg B, Zhang H, Wang Q, Wang Z, Hättenschwiler S. 2018. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc Natl Acad Sci 115(41):10392–10397. https://doi.org/10.1073/pnas.1716595115. Talbot JM, Martin F, Kohler A, Henrissat B, Peay KG. 2015. Functional guild classification predicts the enzymatic role of fungi in litter and soil biogeochemistry. Soil Biol Biochem 88:441–456. https://doi.org/10.1016/j.soilbio.2015.05.006. Taylor BR, Parkinson D, Parsons WFJ. 1989. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test. Ecology 70(1):97–104. JSTOR. https://doi.org/10.2307/1938416 Tedersoo L, Bahram M, Cajthaml T, Põlme S, Hiiesalu I, Anslan S, Harend H, Buegger F, Pritsch K, Koricheva J, Abarenkov K. 2016. Tree diversity and species identity effects on soil fungi, protists and animals are context dependent. ISME J 10(2):2. https://doi.org/10.1038/ismej.2015.116. Thompson JR, Carpenter DN, Cogbill CV, Foster DR. 2013. Four centuries of change in northeastern United States forests. PLoS ONE 8(9):e72540. https://doi.org/10.1371/journal.pone.0072540. Vermont Center for Geographic Information. 2022. https://geodata.vermont.gov/ Voříšková J, Brabcová V, Cajthaml T, Baldrian P. 2014. Seasonal dynamics of fungal communities in a temperate oak forest soil. New Phytol 201(1):269–278. https://doi.org/10.1111/nph.12481. Wallenstein MD, Burns RG. 2011. Ecology of extracellular enzyme activities and organic matter degradation in soil: a complex community-driven process. In: Methods of soil enzymology. Wiley. pp 35–55. https://doi.org/10.2136/sssabookser9.c2 Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73(16):5261–5267. https://doi.org/10.1128/AEM.00062-07. Whalen ED, Lounsbury N, Geyer K, Anthony M, Morrison E, van Diepen LTA, Le Moine J, Nadelhoffer K, van den Enden L, Simpson MJ, Frey SD. 2021. Root control of fungal communities and soil carbon stocks in a temperate forest. Soil Biol Biochem 161:108390. https://doi.org/10.1016/j.soilbio.2021.108390. Wurzburger N, Brookshire ENJ. 2017. Experimental evidence that mycorrhizal nitrogen strategies affect soil carbon. Ecology 98(6):1491–1497. https://doi.org/10.1002/ecy.1827. Zhu K, McCormack ML, Lankau RA, Egan JF, Wurzburger N. 2018. Association of ectomycorrhizal trees with high carbon-to-nitrogen ratio soils across temperate forests is driven by smaller nitrogen not larger carbon stocks. J Ecol 106(2):524–535. https://doi.org/10.1111/1365-2745.12918.