Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Protein hoạt hóa GTPase giả định của Mycobacteriophage có thể tăng cường hiệu quả của kháng sinh
Tóm tắt
Sự gia tăng nhanh chóng tỉ lệ mắc bệnh do các tác nhân kháng kháng sinh (AR) và sự thiếu hụt kháng sinh hiệu quả với các cơ chế hành động mới đã làm dấy lên sự quan tâm trở lại đối với liệu pháp phage. Tình huống này được minh họa qua bệnh lao kháng thuốc (TB), do Mycobacterium tuberculosis kháng thuốc gây ra. Mycobacteriophage SWU1 A321_gp67 mã hóa một protein hoạt hóa GTPase giả định. Mycobacterium smegmatis với sự biểu hiện quá mức gp67 đã cho thấy sự thay đổi trong hình thành thuộc địa và hình thái biofilm, đồng thời hỗ trợ hiệu quả của streptomycin và capreomycin đối với Mycobacterium. Gp67 đã giảm điều hòa sự phiên mã của các gen liên quan đến phát triển màng tế bào và biofilm. Theo hiểu biết của chúng tôi, đây là báo cáo đầu tiên cho thấy rằng protein phage, bên cạnh lysin hoặc các thành phần tái tổ hợp, có thể tương tác bổ sung với các kháng sinh hiện có. Các thành phần phage có thể đại diện cho một manh mối mới đầy hứa hẹn cho việc cải thiện khả năng tác động của kháng sinh.
Từ khóa
#Mycobacteriophage #kháng thuốc #kháng sinh #protein hoạt hóa GTPase #liệu pháp phage #biofilmTài liệu tham khảo
Alexander DC, Jones JR, Tan T, Chen JM, Liu J (2004) PimF, a mannosyltransferase of mycobacteria, is involved in the biosynthesis of phosphatidylinositol mannosides and lipoarabinomannan. J Biol Chem 279(18):18824–18833. doi:10.1074/jbc.M400791200
Bharat A, Jiang M, Sullivan SM, Maddock JR, Brown ED (2006) Cooperative and critical roles for both G domains in the GTPase activity and cellular function of ribosome-associated Escherichia coli EngA. J Bacteriol 188(22):7992–7996. doi:10.1128/JB.00959-06
Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349(6305):117–127. doi:10.1038/349117a0
Brown ED (2005) Conserved P-loop GTPases of unknown function in bacteria: an emerging and vital ensemble in bacterial physiology. Biochem Cell Biol 83(6):738–746. doi:10.1139/o05-162
Brussow H (2005) Phage therapy: the Escherichia coli experience. Microbiology 151(Pt 7):2133–2140. doi:10.1099/mic.0.27849-0
Caldon CE, March PE (2003) Function of the universally conserved bacterial GTPases. Curr Opin Microbiol 6(2):135–139
Caldon CE, Yoong P, March PE (2001) Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol Microbiol 41(2):289–297
Chen JM, German GJ, Alexander DC, Ren H, Tan T, Liu J (2006) Roles of Lsr2 in colony morphology and biofilm formation of Mycobacterium smegmatis. J Bacteriol 188(2):633–641. doi:10.1128/JB.188.2.633-641.2006
Daigle DM, Brown ED (2004) Studies of the interaction of Escherichia coli YjeQ with the ribosome in vitro. J Bacteriol 186(5):1381–1387
Dibb NJ, Wolfe PB (1986) lep operon proximal gene is not required for growth or secretion by Escherichia coli. J Bacteriol 166(1):83–87
Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193
Fan X, Teng T, Wang H, Xie J (2012) Biology of a novel mycobacteriophage, SWU1, isolated from Chinese soil as revealed by genomic characteristics. J Virol 86(18):10230–10231. doi:10.1128/JVI.01568-12
Fan X, Yan J, Xie L, Zeng L, Young RF 3rd, Xie J (2015) Genomic and proteomic features of mycobacteriophage SWU1 isolated from China soil. Gene 561(1):45–53. doi:10.1016/j.gene.2015.02.053
Fedtke I, Gotz F, Peschel A (2004) Bacterial evasion of innate host defenses—the Staphylococcus aureus lesson. Int J Med Microbiol 294(2–3):189–194. doi:10.1016/j.ijmm.2004.06.016
Flores-Valdez MA, Morris RP, Laval F, Daffe M, Schoolnik GK (2009) Mycobacterium tuberculosis modulates its cell surface via an oligopeptide permease (Opp) transport system. FASEB J 23(12):4091–4104. doi:10.1096/fj.09-132407
Fraser CM, Gocayne JD, White O, Adams MD, Clayton RA, Fleischmann RD, Bult CJ, Kerlavage AR, Sutton G, Kelley JM, Fritchman RD, Weidman JF, Small KV, Sandusky M, Fuhrmann J, Nguyen D, Utterback TR, Saudek DM, Phillips CA, Merrick JM, Tomb JF, Dougherty BA, Bott KF, Hu PC, Lucier TS, Peterson SN, Smith HO, Hutchison CA 3rd, Venter JC (1995) The minimal gene complement of Mycoplasma genitalium. Science 270(5235):397–403
Gross M, Marianovsky I, Glaser G (2006) MazG—a regulator of programmed cell death in Escherichia coli. Mol Microbiol 59(2):590–601. doi:10.1111/j.1365-2958.2005.04956.x
Guerrant GO, Lambert MA, Moss CW (1981) Gas-chromatographic analysis of mycolic acid cleavage products in mycobacteria. J Clin Microbiol 13(5):899–907
Hagens S, Blasi U (2003) Genetically modified filamentous phage as bactericidal agents: a pilot study. Lett Appl Microbiol 37(4):318–323
Hagens S, Habel A, von Ahsen U, von Gabain A, Blasi U (2004) Therapy of experimental pseudomonas infections with a nonreplicating genetically modified phage. Antimicrob Agents Chemother 48(10):3817–3822. doi:10.1128/AAC.48.10.3817-3822.2004
Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108. doi:10.1038/nrmicro821
Hatfull GF (2010) Mycobacteriophages: genes and genomes. Annu Rev Microbiol 64:331–356. doi:10.1146/annurev.micro.112408.134233
Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA, Ko CC, Weber RJ, Patel MC, Germane KL, Edgar RH, Hoyte NN, Bowman CA, Tantoco AT, Paladin EC, Myers MS, Smith AL, Grace MS, Pham TT, O’Brien MB, Vogelsberger AM, Hryckowian AJ, Wynalek JL, Donis-Keller H, Bogel MW, Peebles CL, Cresawn SG, Hendrix RW (2010) Comparative genomic analysis of 60 mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol 397(1):119–143. doi:10.1016/j.jmb.2010.01.011
Heitman J, Fulford W, Model P (1989) Phage Trojan horses: a conditional expression system for lethal genes. Gene 85(1):193–197
Himmelreich R, Hilbert H, Plagens H, Pirkl E, Li BC, Herrmann R (1996) Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. Nucleic Acids Res 24(22):4420–4449
Hwang J, Inouye M (2010) A bacterial GAP-like protein, YihI, regulating the GTPase of Der, an essential GTP-binding protein in Escherichia coli. J Mol Biol 399(5):759–772. doi:10.1016/j.jmb.2010.04.040
Johnson DS, Chen YH (2012) Ras family of small GTPases in immunity and inflammation. Curr Opin Pharmacol 12(4):458–463. doi:10.1016/j.coph.2012.02.003
Kiser GL, Weinert TA (1995) GUF1, a gene encoding a novel evolutionarily conserved GTPase in budding yeast. Yeast 11(13):1311–1316. doi:10.1002/yea.320111312
Lamb HK, Thompson P, Elliott C, Charles IG, Richards J, Lockyer M, Watkins N, Nichols C, Stammers DK, Bagshaw CR, Cooper A, Hawkins AR (2007) Functional analysis of the GTPases EngA and YhbZ encoded by Salmonella typhimurium. Protein Sci 16(11):2391–2402. doi:10.1110/ps.072900907
Leipe DD, Wolf YI, Koonin EV, Aravind L (2002) Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317(1):41–72. doi:10.1006/jmbi.2001.5378
Leonardy S, Miertzschke M, Bulyha I, Sperling E, Wittinghofer A, Sogaard-Andersen L (2010) Regulation of dynamic polarity switching in bacteria by a Ras-like G-protein and its cognate GAP. EMBO J 29(14):2276–2289. doi:10.1038/emboj.2010.114
Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131
Lu TK, Collins JJ (2009) Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc Natl Acad Sci U S A 106(12):4629–4634. doi:10.1073/pnas.0800442106
Merril CR, Scholl D, Adhya SL (2003) The prospect for bacteriophage therapy in Western medicine. Nat Rev Drug Discov 2(6):489–497. doi:10.1038/nrd1111
Mittenhuber G (2001) Comparative genomics of prokaryotic GTP-binding proteins (the Era, Obg, EngA, ThdF (TrmE), YchF and YihA families) and their relationship to eukaryotic GTP-binding proteins (the DRG, ARF, RAB, RAN, RAS and RHO families). J Mol Microbiol Biotechnol 3(1):21–35
Molshanski-Mor S, Yosef I, Kiro R, Edgar R, Manor M, Gershovits M, Laserson M, Pupko T, Qimron U (2014) Revealing bacterial targets of growth inhibitors encoded by bacteriophage T7. Proc Natl Acad Sci U S A 111(52):18715–18720. doi:10.1073/pnas.1413271112
Nguyen HT, Wolff KA, Cartabuke RH, Ogwang S, Nguyen L (2010) A lipoprotein modulates activity of the MtrAB two-component system to provide intrinsic multidrug resistance, cytokinetic control and cell wall homeostasis in Mycobacterium. Mol Microbiol 76(2):348–364. doi:10.1111/j.1365-2958.2010.07110.x
Organization WH (2015) Global tuberculosis report 2015.
Pang JM, Layre E, Sweet L, Sherrid A, Moody DB, Ojha A, Sherman DR (2012) The polyketide Pks1 contributes to biofilm formation in Mycobacterium tuberculosis. J Bacteriol 194(3):715–721. doi:10.1128/JB.06304-11
Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Annu Rev Microbiol 57:677–701. doi:10.1146/annurev.micro.57.030502.090720
Recht J, Martinez A, Torello S, Kolter R (2000) Genetic analysis of sliding motility in Mycobacterium smegmatis. J Bacteriol 182(15):4348–4351
Ribeiro AL, Degiacomi G, Ewann F, Buroni S, Incandela ML, Chiarelli LR, Mori G, Kim J, Contreras-Dominguez M, Park YS, Han SJ, Brodin P, Valentini G, Rizzi M, Riccardi G, Pasca MR (2011) Analogous mechanisms of resistance to benzothiazinones and dinitrobenzamides in Mycobacterium smegmatis. PLoS One 6(11):e26675. doi:10.1371/journal.pone.0026675
Sassi M, Bebeacua C, Drancourt M, Cambillau C (2013) The first structure of a mycobacteriophage, the Mycobacterium abscessus subsp. bolletii phage Araucaria. J Virol 87(14):8099–8109. doi:10.1128/JVI.01209-13
Schaefer L, Uicker WC, Wicker-Planquart C, Foucher AE, Jault JM, Britton RA (2006) Multiple GTPases participate in the assembly of the large ribosomal subunit in Bacillus subtilis. J Bacteriol 188(23):8252–8258. doi:10.1128/JB.01213-06
Tan J, Jakob U, Bardwell JC (2002) Overexpression of two different GTPases rescues a null mutation in a heat-induced rRNA methyltransferase. J Bacteriol 184(10):2692–2698
Tao J, Han J, Wu H, Hu X, Deng J, Fleming J, Maxwell A, Bi L, Mi K (2013) Mycobacterium fluoroquinolone resistance protein B, a novel small GTPase, is involved in the regulation of DNA gyrase and drug resistance. Nucleic Acids Res 41(4):2370–2381. doi:10.1093/nar/gks1351
Tomar SK, Dhimole N, Chatterjee M, Prakash B (2009) Distinct GDP/GTP bound states of the tandem G-domains of EngA regulate ribosome binding. Nucleic Acids Res 37(7):2359–2370. doi:10.1093/nar/gkp107
Westwater C, Kasman LM, Schofield DA, Werner PA, Dolan JW, Schmidt MG, Norris JS (2003) Use of genetically engineered phage to deliver antimicrobial agents to bacteria: an alternative therapy for treatment of bacterial infections. Antimicrob Agents Chemother 47(4):1301–1307
Zhang J, Inouye M (2002) MazG, a nucleoside triphosphate pyrophosphohydrolase, interacts with Era, an essential GTPase in Escherichia coli. J Bacteriol 184(19):5323–5329