Mutations of acetylcholinesterase which confer insecticide resistance in insect populations

Chemico-Biological Interactions - Tập 157 - Trang 257-261 - 2005
D. Fournier1
1IPBS, Biotechnologie des Proteines, 205 route de Narbonne, 31077 Toulouse, France

Tài liệu tham khảo

Aldridge, 1950, Some properties of specific cholinesterase with particular reference to the mechanism of inhibition by diethyl p-nitrophenyl thiophosphate (E 605) and analogues, J. Biochem. (Tokyo), 46, 451, 10.1042/bj0460451 Smissaert, 1964, Cholinesterase inhibition in spider mites susceptible and resistant to organophosphate, Science, 143, 129, 10.1126/science.143.3602.129 Fournier, 1994, Modification of acetylcholinesterase as a mechanism of resistance to insecticides, Comp. Biochem. Physiol., 108C, 19 Charpentier, 2001, Acetylcholinesterase amount in Drosophila melanogaster in relation to insecticide resistance, Pest. Biochem. Physiol., 70, 100, 10.1006/pest.2001.2549 Fournier, 1992, Acetylcholinesterase. Two types of modifications confer resistance to insecticide, J. Biol. Chem., 267, 14270, 10.1016/S0021-9258(19)49708-1 Bourguet, 1996, Existence of two acetylcholinesterases in the mosquito Culex pipiens (Diptera: Culicidae), J. Neurochem., 67, 2115, 10.1046/j.1471-4159.1996.67052115.x Malcolm, 1998, A sex-linked Ace gene, not linked to insensitive acetylcholinesterase-mediated insecticide resistance in Culex pipiens, Insect Mol. Biol., 7, 107, 10.1046/j.1365-2583.1998.72055.x Weill, 2002, A novel acetylcholinesterase gene in mosquitoes codes for the insecticide target and is non-homologous to the ace gene in Drosophila, Proc. R. Soc. Lond. B Biol. Sci., 269, 2007, 10.1098/rspb.2002.2122 Li, 2002, Two different genes encoding acetylcholinesterase existing in cotton aphid (Aphis gossypii), Genome, 45, 1134, 10.1139/g02-085 Gao, 2002, Molecular cloning and characterization of a greenbug (Schizaphis graminum) cDNA encoding acetylcholinesterase possibly evolved from a duplicate gene lineage, Insect Biochem. Mol. Biol., 32, 765, 10.1016/S0965-1748(01)00159-X Temeyer, 2004, Identification of a third Boophilus microplus (Acari: Ixodidae) cDNA presumptively encoding an acetylcholinesterase, J. Med. Entomol., 41, 259, 10.1603/0022-2585-41.3.259 Baxter, 1998, Acetylcholinesterase cDNA of the cattle tick, Boophilus microplus: characterisation and role in organophosphate resistance, Insect Biochem. Mol. Biol., 28, 581, 10.1016/S0965-1748(98)00034-4 Tomita, 2000, Absence of protein polymorphism attributable to insecticide-insensitivity of acetylcholinesterase in the green rice leafhopper, Nephotettix cincticeps, Insect Biochem. Mol. Biol., 30, 325, 10.1016/S0965-1748(00)00006-0 Ren, 2002, Mechanisms of monocrotophos resistance in cotton bollworm, Helicoverpa armigera (Hubner), Arch. Insect Biochem. Physiol., 51, 103, 10.1002/arch.10054 Javed, 2003, Characterization of acetylcholinesterases, and their genes, from the hemipteran species Myzus persicae (Sulzer), Aphis gossypii (Glover), Bemisia tabaci (Gennadius) and Trialeurodes vaporariorum (Westwood), Insect Mol. Biol., 12, 613, 10.1046/j.1365-2583.2003.00446.x Berrada, 1997, Transposition-mediated transcriptional overexpression as a mechanism of insecticide resistance, Mol. Gen. Genet., 256, 348, 10.1007/s004380050578 Mesulam, 2002, Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine, Neuroscience, 110, 627, 10.1016/S0306-4522(01)00613-3 Hall, 1976, Genetics of acetylcholinesterase in Drosophila melanogaster, Genetics, 83, 517, 10.1093/genetics/83.3.517 Menozzi, 2004, Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations, BMC Evol. Biol., 4, 4, 10.1186/1471-2148-4-4 Boublik, 2002, Acetylcholinesterase engineering for detection of insecticide residues, Protein Eng., 15, 43, 10.1093/protein/15.1.43 Li, 2004, Mutations in acetylcholinesterase associated with insecticide resistance in the cotton aphid, Aphis gossypii Glover, Insect Biochem. Mol. Biol., 34, 397, 10.1016/j.ibmb.2004.02.001 Mutero, 1994, Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase, Proc. Natl. Acad. Sci. USA, 91, 5922, 10.1073/pnas.91.13.5922 Chen, 2001, The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina, Insect Biochem. Mol. Biol., 31, 805, 10.1016/S0965-1748(00)00186-7 Vaughan, 1997, Site-directed mutagenesis of an acetylcholinesterase gene from the yellow fever mosquito Aedes aegypti confers insecticide insensitivity, Exp. Parasitol., 87, 237, 10.1006/expr.1997.4244 Mutero, 1994, Resistance-associated point mutations in insecticide-insensitive Acetylcholinesterase, PNAS, 91, 5922, 10.1073/pnas.91.13.5922 Weill, 2003, Comparative genomics: insecticide resistance in mosquito vectors, Nature, 423, 136, 10.1038/423136b Weill, 2004, The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors, Insect Mol. Biol., 13, 1, 10.1111/j.1365-2583.2004.00452.x Anazawa, 2003, Sequence of a cDNA encoding acetylcholinesterase from susceptible and resistant two-spotted spider mite, Tetranychus urticae, Insect Biochem. Mol. Biol., 33, 509, 10.1016/S0965-1748(03)00025-0 Lockridge, 1997, A single amino acid substitution, Gly117His, confers phosphotriesterase (organophosphorus acid anhydride hydrolase) activity on human butyrylcholinesterase, Biochemistry, 36, 786, 10.1021/bi961412g Newcomb, 1997, A single amino acid substitution converts a carboxylesterase to an organophosphorus hydrolase and confers insecticide resistance on a blowfly, Proc Natl. Acad. Sci. USA, 94, 7464, 10.1073/pnas.94.14.7464 Vontas, 2002, Resistance-associated point mutations of organophosphate insensitive acetylcholinesterase, in the olive fruit fly Bactrocera oleae, Insect Mol. Biol., 11, 329, 10.1046/j.1365-2583.2002.00343.x Kozaki, 2001, Fenitroxon insensitive acetylcholinesterases of the housefly, Musca domestica associated with point mutations, Insect Biochem. Mol. Biol., 31, 991, 10.1016/S0965-1748(01)00047-9 Walsh, 2001, Identification and characterization of mutations in housefly (Musca domestica) acetylcholinesterase involved in insecticide resistance, Biochem. J., 359, 175, 10.1042/bj3590175 Toda, 2004, Two amino acid substitutions in acetylcholinesterase associated with pirimicarb and organophosphorous insecticide resistance in the cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae), Insect Mol. Biol., 13, 549, 10.1111/j.0962-1075.2004.00513.x Andrews, 2004, Identification of mutations conferring insecticide-insensitive AChE in the cotton-melon aphid, Aphis gossypii Glover, Insect Mol. Biol., 13, 555, 10.1111/j.0962-1075.2004.00517.x Shi, 2004, Acetylcholinesterase alterations reveal the fitness cost of mutations conferring insecticide resistance, BMC Evol. Biol., 4, 5, 10.1186/1471-2148-4-5 Zhu, 1996, A point mutation of acetylcholinesterase associated with azinphosmethyl resistance and reduced fitness in Colorado potato beetle, Pest. Biochem. Physiol., 55, 100, 10.1006/pest.1996.0039 Harel, 2000, Three-dimensional structures of Drosophila melanogaster acetylcholinesterase and of its complexes with two potent inhibitors, Protein Sci., 9, 1063, 10.1110/ps.9.6.1063 Benting, 2004, Biochemical evidence that an S431F mutation in acetylcholinesterase-1 of Aphis gossypii mediates resistance to pirimicarb and omethoate, Pest Manage. Sci., 60, 1051, 10.1002/ps.971 Nabeshima, 2003, An amino acid substitution on the second acetylcholinesterase in the pirimicarb-resistant strains of the peach potato aphid, Myzus persicae, Biochem. Biophys. Res. Commun., 307, 15, 10.1016/S0006-291X(03)01101-X Nabeshima, 2004, An amino acid substitution attributable to insecticide-insensitivity of acetylcholinesterase in a Japanese encephalitis vector mosquito, Culex tritaeniorhynchus, Biochem. Biophys. Res. Commun., 313, 794, 10.1016/j.bbrc.2003.11.141 Marcel, 1998, Two invertebrate acetylcholinesterases show activation followed by inhibition with substrate concentration, Biochem. J., 329, 329, 10.1042/bj3290329 Stojan, 2004, Inhibition of Drosophila melanogaster acetylcholinesterase by high concentrations of substrate, Eur. J. Biochem., 271, 1364, 10.1111/j.1432-1033.2004.04048.x Masson, 1997, Role of aspartate 70 and tryptophan 82 in binding of succinyldithiocholine to human butyrylcholinesterase, Biochemistry, 36, 2266, 10.1021/bi962484a Tara, 1998, Rapid binding of a cationic active site inhibitor to wild type and mutant mouse acetylcholinesterase: Brownian dynamics simulation including diffusion in the active site gorge, Biopolymers, 46, 465, 10.1002/(SICI)1097-0282(199812)46:7<465::AID-BIP4>3.0.CO;2-Y Mallender, 2000, Acetylthiocholine binds to asp74 at the peripheral site of human acetylcholinesterase as the first step in the catalytic pathway, Biochemistry, 39, 7753, 10.1021/bi000210o Wilson, 1956, Acetylcholinesterase: enthalpies and entropies of activation, J. Am. Chem. Soc., 78, 202, 10.1021/ja01582a056 Szegletes, 1998, Nonequilibrium analysis alters the mechanistic interpretation of inhibition of acetylcholinesterase by peripheral site ligands, Biochemistry, 37, 4206, 10.1021/bi972158a Brochier, 2001, Involvement of deacylation in activation of substrate hydrolysis by Drosophila acetylcholinesterase, J. Biol. Chem., 276, 18296, 10.1074/jbc.M005555200 Krupka, 1961, Molecular mechanisms for hydrolytic enzyme action. II. Inhibition of acetylcholinesterase by excess substrate, J. Am. Chem. Soc., 83, 1448, 10.1021/ja01467a042