Mutations in the activin receptor–like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2
Tóm tắt
Từ khóa
Tài liệu tham khảo
Guttmacher, A.E., McKinnon, W.C. & Upton, M.D. Hereditary hemorrhagic telangiectasia: a disorder in search of the genetics community. Am. J. Med. Genet. 52, 252–253 (1994).
Guttmacher, A.E., Marchuk, D.A. & White, R.I. Current concepts: Hereditary hemorrhagic telangiectasia. New Engl. J. Med. 333, 918–924 (1995).
McDonald, M.T. et al. A disease locus for hereditary haemorrhagic telangiectasia maps to chromosome 9q33-34. Nature Genet. 6, 197–204 (1994).
Shovlin, C.L. et al. A gene for hereditary haemorrhagic telangiectasia maps to chromosome 9q3. Nature Genet. 6, 205–209 (1994).
McAllister, K.A. et al. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nature Genet. 8, 345–351 (1994).
Gougos, A. & Letarte, M. Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J. Biol. Chem. 265, 8361–8364 (1990).
Cheifetz, S. et al. Endoglin is a component of the transforming growth factor-β receptor system in human endothelial cells. J. Biol. Chem. 267, 19027–19030 (1992).
McAllister, K.A. et al. Six novel mutations in the endoglin gene in hereditary hemorrhagic telangiectasia type 1 suggest a dominant-negative effect of receptor function. Hum. Mol. Genet. 4, 1983–1985 (1995).
McAllister, K.A. et al. Genetic heterogeneity in hereditary hemorrhagic telangiectasia: possible correlation with clinical phenotype. J. Med. Genet. 31, 927–932 (1994).
Porteous, M.E.M. et al. Genetic heterogeneity in hereditary haemorrhagic telangiectasia. J. Med. Genet. 31, 925–926 (1994).
Heutink, P. et al. Linkage of hereditary hemorrhagic telangiectasia to chromosome 9q34 and evidence for locus heterogeneity. J. Med. Genet. 31, 933–936 (1994).
Berg, J.N., Guttmacher, A.E., Marchuk, D.A. & Porteous, M.E.M. Clinical heterogeneity in hereditary haemorrhagic telangiectasia: are pulmonary arteriovenous malformations more common in families linked to endoglin? J. Med. Genet. 33, 256–257 (1996).
Vincent, P. et al. A third locus for hereditary haemorrhagic telangiectasia maps to chromosome 12q. Hum. Mol. Genet. 4, 945–949 (1995).
Johnson, D.W. et al. A second locus for hereditary hemorrhagic telangiectasia maps to chromosome 12. Genome Res. 5, 21–28 (1995).
Attisano, L. et al. Identification of human activin and TGF-β type I receptors that form heteromeric kinase complexes with type II receptors. Cell. 75, 671–680 (1993).
ten Dijke, P. et al. Characterization of type I receptors for transforming growth factor-b and activin. Science. 264, 101–104 (1994).
Miyazono, K., ten Dijke, P., Yamashita, H. & Heldin, C.-H., Signal transduction via serine/threonine kinase receptors. Semin. Cell Bio. 5, 389–398 (1994).
Mathews, L.S. Activin receptors and cellular signaling by the receptor serine kinase family. Endocrine Rev. 15, 310–325 (1994).
Kucherlapati, R., Craig, I. & Marynen, P. Report of the second international workshop on human chromosome 12 mapping 1994. Cytogenet. Cell Genet. 67, 246–264 (1994).
Carcamo, J. et al. Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor β and activin. Mol. Cell. Biol. 14, 3810–3821 (1994).
ten Dijke, P. et al. Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene. 8, 2879–2887 (1993).
Hanks, S.K. & Hunter, T. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9, 576–596 (1995).
Choi, M.E. & Ballermann, B.J. Inhibition of capillary morphogenesis and associated apoptosis by dominant negative mutant transforming growth factor-β receptors. J. Biol. Chem. 270, 21144–21150 (1995).
Lopez-Casillas, F., Wrana, J.L. & Massague, J. Betaglycan presents ligand to the TGF-β signaling receptor. Cell. 73, 1435–1444 (1993).
Madri, J.A. et al. Interactions of matrix components and soluble factors in vascular responses to injury. Modulation of cell phenotype. In Endothelial cell dysfunctions(eds Simionescu, N. & Simionescu, M.) (Plenum Press, New York, 1992).
Luscinkas, F.W. & Lawler, J. Integrins as dynamics regulators of vascular function. FASEB J. 8, 929–938 (1994).
Krauter, K. et al. A second-generation YAC contig map of human chromosome 12. Nature. 377, 321–333 (1995).
Struewing, J.P. et al. The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals. Nature Genet. 11, 198–200 (1995).
Franzen, P. et al. Cloning of a TGF-β type I receptor that forms a heteromeric complex with the TGF-β type II receptor. Cell. 75, 681–692 (1993).
Wrana, J.L. et al. Two distinct transmembrane serine/threonine kinases from Drosophila melanogaster form an activin receptor complex. Mol. Cell. Biol. 14, 944–950 (1994).
Xie, T., Finelli, A.L. & Padgett, R.W., Drosophila saxophone gene encodes a serine-threonine kinase receptor of the TGF-β superfamily. Science. 263, 1756–1759 (1994).
Brummel, T.J. et al. Characterization and relationship of Dpp receptors encoded by the saxophone and thick veins genes in Drosophila. Cell. 78, 251–261 (1994).