Mutations in the activin receptor–like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2

Nature Genetics - Tập 13 Số 2 - Trang 189-195 - 1996
David W. Johnson1, Jonathan Berg1, Melanie A. Baldwin1, Carol Gallione1, Ivonne Marondel2, Sang-Heon Yoon2, Timothy T. Stenzel1, Marcy C. Speer3, M. A. Pericak‐Vance3, Austin G. Diamond4, Alan E. Guttmacher5, Charles E. Jackson6, Liliana Attisano7, Raju Kucherlapati2, Gad Rennert8, Douglas A. Marchuk1
1Department of Genetics, Duke University Medical Center, Box 3175, Durham, North Carolina, 27710, USA
2Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, New York, 10461, USA
3Department of Medicine, Division of Neurology, Duke University Medical Center, Durham, North Carolina 27710 USA
4Department of Immunology, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4AA, UK
5Department of Pediatrics, University of Vermont, Burlington, VT, 05401, USA
6Departmentof Medicine, Division of Clinical and Molecular Genetics, Henry Ford Hospital, Detroit, Michigan, 48202, USA
7Department of Anatomy and Cell Biology, The University of Toronto, Toronto, Ontario, M5S1A8, Canada
8Department of Human Genetics, University of Edinburgh, Edinburgh, EH4 2XU, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Guttmacher, A.E., McKinnon, W.C. & Upton, M.D. Hereditary hemorrhagic telangiectasia: a disorder in search of the genetics community. Am. J. Med. Genet. 52, 252–253 (1994).

Guttmacher, A.E., Marchuk, D.A. & White, R.I. Current concepts: Hereditary hemorrhagic telangiectasia. New Engl. J. Med. 333, 918–924 (1995).

McDonald, M.T. et al. A disease locus for hereditary haemorrhagic telangiectasia maps to chromosome 9q33-34. Nature Genet. 6, 197–204 (1994).

Shovlin, C.L. et al. A gene for hereditary haemorrhagic telangiectasia maps to chromosome 9q3. Nature Genet. 6, 205–209 (1994).

McAllister, K.A. et al. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nature Genet. 8, 345–351 (1994).

Gougos, A. & Letarte, M. Primary structure of endoglin, an RGD-containing glycoprotein of human endothelial cells. J. Biol. Chem. 265, 8361–8364 (1990).

Cheifetz, S. et al. Endoglin is a component of the transforming growth factor-β receptor system in human endothelial cells. J. Biol. Chem. 267, 19027–19030 (1992).

McAllister, K.A. et al. Six novel mutations in the endoglin gene in hereditary hemorrhagic telangiectasia type 1 suggest a dominant-negative effect of receptor function. Hum. Mol. Genet. 4, 1983–1985 (1995).

McAllister, K.A. et al. Genetic heterogeneity in hereditary hemorrhagic telangiectasia: possible correlation with clinical phenotype. J. Med. Genet. 31, 927–932 (1994).

Porteous, M.E.M. et al. Genetic heterogeneity in hereditary haemorrhagic telangiectasia. J. Med. Genet. 31, 925–926 (1994).

Heutink, P. et al. Linkage of hereditary hemorrhagic telangiectasia to chromosome 9q34 and evidence for locus heterogeneity. J. Med. Genet. 31, 933–936 (1994).

Berg, J.N., Guttmacher, A.E., Marchuk, D.A. & Porteous, M.E.M. Clinical heterogeneity in hereditary haemorrhagic telangiectasia: are pulmonary arteriovenous malformations more common in families linked to endoglin? J. Med. Genet. 33, 256–257 (1996).

Vincent, P. et al. A third locus for hereditary haemorrhagic telangiectasia maps to chromosome 12q. Hum. Mol. Genet. 4, 945–949 (1995).

Johnson, D.W. et al. A second locus for hereditary hemorrhagic telangiectasia maps to chromosome 12. Genome Res. 5, 21–28 (1995).

Attisano, L. et al. Identification of human activin and TGF-β type I receptors that form heteromeric kinase complexes with type II receptors. Cell. 75, 671–680 (1993).

ten Dijke, P. et al. Serine/threonine kinase receptors. Prog. Growth Factor Res. 5, 55–72 (1994).

ten Dijke, P. et al. Characterization of type I receptors for transforming growth factor-b and activin. Science. 264, 101–104 (1994).

Miyazono, K., ten Dijke, P., Yamashita, H. & Heldin, C.-H., Signal transduction via serine/threonine kinase receptors. Semin. Cell Bio. 5, 389–398 (1994).

Mathews, L.S. Activin receptors and cellular signaling by the receptor serine kinase family. Endocrine Rev. 15, 310–325 (1994).

Gyapay, G. et al. The 1993–94 Genethon human genetic linkage map. Nature Genet. 7, 246–339 (1994).

Kucherlapati, R., Craig, I. & Marynen, P. Report of the second international workshop on human chromosome 12 mapping 1994. Cytogenet. Cell Genet. 67, 246–264 (1994).

Carcamo, J. et al. Type I receptors specify growth-inhibitory and transcriptional responses to transforming growth factor β and activin. Mol. Cell. Biol. 14, 3810–3821 (1994).

ten Dijke, P. et al. Activin receptor-like kinases: a novel subclass of cell-surface receptors with predicted serine/threonine kinase activity. Oncogene. 8, 2879–2887 (1993).

Hanks, S.K. & Hunter, T. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9, 576–596 (1995).

Choi, M.E. & Ballermann, B.J. Inhibition of capillary morphogenesis and associated apoptosis by dominant negative mutant transforming growth factor-β receptors. J. Biol. Chem. 270, 21144–21150 (1995).

Lopez-Casillas, F., Wrana, J.L. & Massague, J. Betaglycan presents ligand to the TGF-β signaling receptor. Cell. 73, 1435–1444 (1993).

Madri, J.A. et al. Interactions of matrix components and soluble factors in vascular responses to injury. Modulation of cell phenotype. In Endothelial cell dysfunctions(eds Simionescu, N. & Simionescu, M.) (Plenum Press, New York, 1992).

Luscinkas, F.W. & Lawler, J. Integrins as dynamics regulators of vascular function. FASEB J. 8, 929–938 (1994).

Krauter, K. et al. A second-generation YAC contig map of human chromosome 12. Nature. 377, 321–333 (1995).

Struewing, J.P. et al. The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals. Nature Genet. 11, 198–200 (1995).

Franzen, P. et al. Cloning of a TGF-β type I receptor that forms a heteromeric complex with the TGF-β type II receptor. Cell. 75, 681–692 (1993).

Wrana, J.L. et al. Two distinct transmembrane serine/threonine kinases from Drosophila melanogaster form an activin receptor complex. Mol. Cell. Biol. 14, 944–950 (1994).

Xie, T., Finelli, A.L. & Padgett, R.W., Drosophila saxophone gene encodes a serine-threonine kinase receptor of the TGF-β superfamily. Science. 263, 1756–1759 (1994).

Brummel, T.J. et al. Characterization and relationship of Dpp receptors encoded by the saxophone and thick veins genes in Drosophila. Cell. 78, 251–261 (1994).

Wrana, J.L. et al. Mechanism of activation of the TGF-β receptor. Nature. 370, 341–347 (1994).