Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1

Nature Genetics - Tập 12 Số 3 - Trang 248-253 - 1996
Su'e Chang1, Stefan Gründer2, Aaron Hanukoglu3, Ariel Rösler4, Puthenpurackal M. Mathew5, Israel Hanukoglu6, Laurent Schild2, Yin Lu1, Richard A. Shimkets1, Carol Nelson‐Williams1, Bernard C. Rossier2, Richard P. Lifton7
1Howard Hughes Medical Institute, Department of Genetics, Boyer Center for Molecular Medicine, New Haven, Connecticut, 06510, USA
2Institut de Pharmacologie et de Toxicologie, Universite de Lausanne, Rue du Bugnon 27, CH-1005, Lausanne, Switzerland
3Department of Pediatrics, E. Wolfson Hospital, Holon
4Department of Endocrinology and Metabolism, The Hebrew University of Jerusalem, Hadassah Medical Center, Jerusalem, Israel
5Department of Pediatrics, Dhahran Health Center, Dhahran, Saudi Arabia
6Research Institute, College of Judea and Samaria, Ariel
7Section of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, 06510, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cheek, D. & Perry, J.W. A salt wasting syndrome in infancy. Arch. Dis. Childh. 33, 252–256 (1958).

Dillon, M.J. et al. Pseudohypoaldosteronism. Arch. Dis. Childh. 55, 427–434 (1980).

Popow, C., Pollak, A., Herkner, K., Scheibenreiter, S. & Swoboda, W. Familial pseudohypoaldosteronism. Acta Paediat. Scand. 77, 136–141 (1988).

Speiser, P.W., Stoner, E. & New, M.I. Pseudohypoaldosteronism: a review and report of two new cases. In Mechanisms and clinical aspects of steroid hormone resistance. (eds Chrousos, G.R, Loriaux, D.T. & Lipsett, M.B.) 173–195 (Plenum Press, New York, 1986).

Donnell, G.N., Litman, N. & Roldan, M., Am. J. Dis. Child. 97, 813–828 (1959).

Mathew, P.M., Manasra, K.B. & Hamdan, J.A. Indomethacin and cation-exchange resin in the management of pseudohypoaldosteronism. Clinical Pediat. 1, 58–60 (1993).

Hanukoglu, A. Type I pseudohypoaldosteronism includes two clinically and genetically distinct entities with either renal or multiple target organ defects. J.Clin. Endocrinn. Metab. 73, 936–944 (1991).

Hanukoglu, A., Bistritzer, T., Rakover, V. & Mandelberg, A. Pseudohypoaldosteronism with increased sweat and saliva electrolyte values and frequent lower respiratory tract infections mimicking cyctic fibrosis. J.Pediat. 125, 752–755 (1994).

Hogg, R.J., Marks, J.F., Marver, D. & Frolich, J.C. Long term observations in a patient with pseudohypoaldosteronism. Pediat. Nephrology. 5, 205–210 (1991).

Limal, J.M., Rapport, R., Dechaux, M., Riffaud, C. & Morin, C. Familial dominant pseudohypoaldosteronism. Lancet. 1, 51 (1978).

Hanukoglu, A., Fried, D. & Gotlieb, A. Inheritance of pseudohypoaldosteronism. Lancet. 1, 1359 (1978).

Rösier, A. The natural history of salt-wasting disorders of adrenal and renal origin. J. Clin. Endocrin. Metab. 59, 689–700 (1984).

Armanini, D. et al. Aldosterone-receptor deficiency in pseudohypoaldosteronism. New Engl. J. Med. 313, 1178–1181 (1985).

Kuhnle, U. et al. Pseudohypoaldosteronism in eight families: different forms of inheritance are evidence for various genetic defects. J. CIin. Endocrin. Metab. 70, 638–641 (1990).

Bosson, D. et al. Generalized unresponsiveness to mineralocorticoid hormones: familial recessive pseudohypoaldosteronism due to aldosterone-receptor deficiency. Acta Endocrin. 113, S376–S381 (1986).

Komesaroff, P.A., Verity, K. & Fuller, P.J. Pseudohypoaldosteronism: molecular characterization of the mineralocorticoid receptor. J. CIin. Endocrin. & Metab. 79, 27–31 (1994).

Zennaro, M.C., Borensztein, R., Jeunemaitre, X., Armanini, D. & Soubrier, F. No alteration in the primary structure of the mineralocorticoid receptor in a family with pseudohypoaldosteronism. J.CIin. Endocrin. Metab. 79, 32–38 (1994).

Horisberger, J.D., Canessa, C. & Rossier, B.C., Palmer, L.G. The epitheliall sodium channel-recent developments. Cell Physiol. Biochem. 32, 283–294 (1993).

Rossier, B.C. & Palmer, L.G. Mechanism of aldosterone action on sodium and potassiium transport. In The Kidney, physiology and pathophysiology, (eds Seldin, D.W. & Giebisch, G.) 1373–1409 (Raven Press, New York, 1992).

Canessa, C.M., Horisberger, J.D. & Rossier, B.D. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature. 361, 467–470 (1993).

Canessa, C.M. et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature. 367, 463–467 (1994).

Shimkets, R.A. et al. Liddle's Syndrome: heritable human hypertension caused by mutation in the B subunit of the epithelial sodium channel. Cell. 79, 407–414 (1994).

Hansson, J.H. et al. Hypertension caused by a truncated epithelial sodium channel subunit: genetic heterogeneity of Liddle's syndrome. Nature Genet. 11, 76–82 (1995).

Hansson, J.H. et al. Adenovo missense mutation of the B subunit of the epithelial sodium channel causes hypertension and Liddle's syndrome, identifying a proline-rich segment critical for regulation of channel activity. Proc. Natl. Acad. Sci. USA 92, 11495–11499 (1995).

Schild, L. et al. A mutation in the epithelial sodium channel causing Liddle's disease increases channel activity in the Xenopus laevis oocyte expression system. Proc. Natl. Acad. Sci. USA 92, 5699–5703 (1995).

Lander, E.S. & Botstein, D. Homozygosity mapping: A way to map human recessive traits with the DNA of inbred children. Science 236, 1567–1570 (1987).

Gyapay, G. et al. The 1993–94 Genethon human genetic linkage map. Nature Genet. 7, 246–339 (1994).

Li, X.J., Xu, R.H., Guggino, W.B. & Snyder, S.H. Alternatively spliced forms of the alpha subunit of the epithelial sodium channel: distinct sites for amiloride binding and channel pores. Mol. Pharmacol. 47, 1133–1140 (1995).

McDonald, F.J., Snyder, P.M., McCaray, P.B. Jr. & Welsh, M.J. Cloning, expression, and tissue distrubution of a human amiloride-sensitive Na+ channel. Am. J. Physiol. 268, L728–734 (1994).

McDonald, F.J., Price, M.P., Snyder, P.M. & Welsh, M.J. Cloning and expression of the β and γ subunits of the human epithelial sodium channel. Am. J. Physiol. 268, C1157–C1163 (1995).

Puoti, A. et al. The highly selective low-conductance epithelial Na channel of Xenopus laevis A6 kidney cells. Am J. Physiol 269, C188–C197 (1995).

Waldmann, R., Champigny, G., Bassilana, F., Voilley, N. & Lazdunski, M. Molecular cloning and functional expression of a novel amiloride-sensitive Na+ channel. J. Biol. Chem. 270, 27411–27414 (1995).

Huang, M. & Chalfie, M. Gene interactions affecting mechanosensory transduction in Caenomabditis elegans. Nature. 367, 467–470 (1994).

Chalfie, M. & Wolinsky, E. The identification and suppression of inherited neurodegeneration in Caenomabditis elegans. Nature. 345, 410–416 (1990).

Duc, C., Farman, N., Canessa, C.M., Bonvalet, J-P. & Rossier, B.C. Cell specific expression of epithelial sodium channel α, β and γ in aldosterone responsive epithelia from the rat: localization by in situ hybridization and immunocytochemistry. J. Cell. Biol. 127, 1907–1921 (1994).

Strang, L.B. Fetal lung liquid: secretion and reabsorption. Physiol. Rev. 71, 991–1016 (1991).

Hummler et al. Early death due to defective neonatal lung liquid clearance in alpha ENaC-deficient mice. Nature Genet. 12, 325–328 (1996).

Simon, D. et al. Gittleman's variant of Bartter's syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive NaCl cotransporter. Nature Genet. 12, 24–30 (1996).

Bell, G., Karam, J. & Rutter, W. Polymorphic DNA region adjacent to the 5′ end of the human insulin gene. Proc. Natl. Acad. Sci. USA 78, 5759–5763 (1981).

Canessa, C.M., Merillat, A.M. & Rossier, B.C. Membrane topology of the epithelial sodium channel in intact cells. Am. J. Ped. 267, C1682–169 (1994).