Mutational effects and the evolution of new protein functions

Nature Reviews Genetics - Tập 11 Số 8 - Trang 572-582 - 2010
Misha Soskine1, Dan S. Tawfik2
1Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
2Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Conant, G. C. & Wolfe, K. H. Turning a hobby into a job: how duplicated genes find new functions. Nature Rev. Genet. 9, 938–950 (2008).

Innan, H. & Kondrashov, F. The evolution of gene duplications: classifying and distinguishing between models. Nature Rev. Genet. 11, 97–108 (2010).

DePristo, M. A., Weinreich, D. M. & Hartl, D. L. Missense meanderings in sequence space: a biophysical view of protein evolution. Nature Rev. Genet. 6, 678–687 (2005).

Pal, C., Papp, B. & Lercher, M. J. An integrated view of protein evolution. Nature Rev. Genet. 7, 337–348 (2006).

Dean, A. M. & Thornton, J. W. Mechanistic approaches to the study of evolution: the functional synthesis. Nature Rev. Genet. 8, 675–688 (2007).

Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

Eyre-Walker, A. & Keightley, P. D. The distribution of fitness effects of new mutations. Nature Rev. Genet. 8, 610–618 (2007).

Camps, M., Herman, A., Loh, E. & Loeb, L. A. Genetic constraints on protein evolution. Crit. Rev. Biochem. Mol. Biol. 42, 313–326 (2007).

Bloom, J. D. et al. Thermodynamic prediction of protein neutrality. Proc. Natl Acad. Sci. USA 102, 606–611 (2005).

Bershtein, S., Segal, M., Bekerman, R., Tokuriki, N. & Tawfik, D. S. Robustness–epistasis link shapes the fitness landscape of a randomly drifting protein. Nature 444, 929–932 (2006).

Bershtein, S. & Tawfik, D. S. Ohno's model revisited: measuring the frequency of potentially adaptive mutations under various mutational drifts. Mol. Biol. Evol. 25, 2311–2318 (2008).

Hecky, J. & Muller, K. M. Structural perturbation and compensation by directed evolution at physiological temperature leads to thermostabilization of β-lactamase. Biochemistry 44, 12640–12654 (2005).

Yue, P. & Moult, J. Identification and analysis of deleterious human SNPs. J. Mol. Biol. 356, 1263–1274 (2006).

Tokuriki, N., Oldfield, C. J., Uversky, V. N., Berezovsky, I. N. & Tawfik, D. S. Do viral proteins possess unique biophysical features? Trends Biochem. Sci. 34, 53–59 (2009).

Wang, X., Minasov, G. & Shoichet, B. K. Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs. J. Mol. Biol. 320, 85–95 (2002).

Tokuriki, N., Stricher, F., Serrano, L. & Tawfik, D. S. How protein stability and new functions trade off. PLoS Comput. Biol. 4, e1000002 (2008).

Levin, K. B. et al. Following evolutionary paths to protein–protein interactions with high affinity and selectivity. Nature Struct. Mol. Biol. 16, 1049–1055 (2009).

Lindner, A. B., Madden, R., Demarez, A., Stewart, E. J. & Taddei, F. Asymmetric segregation of protein aggregates is associated with cellular aging and rejuvenation. Proc. Natl Acad. Sci. USA 105, 3076–3081 (2008).

McLoughlin, S. Y. & Copley, S. D. A compromise required by gene sharing enables survival: implications for evolution of new enzyme activities. Proc. Natl Acad. Sci. USA 105, 13497–13502 (2008).

Vick, J. E., Schmidt, D. M. & Gerlt, J. A. Evolutionary potential of (β/α)8-barrels: in vitro enhancement of a 'new' reaction in the enolase superfamily. Biochemistry 44, 11722–11729 (2005).

Khersonsky, O. & Tawfik, D. S. Enzyme promiscuity: a mechanistic and evolurtionary perpective. Ann. Rev. Biochem. 79, 471–505 (2010).

Aharoni, A. et al. The 'evolvability' of promiscuous protein functions. Nature Genet. 37, 73–76 (2005).

Tokuriki, N. & Tawfik, D. S. Protein dynamism and evolvability. Science 324, 203–207 (2009).

Scannell, D. R. & Wolfe, K. H. A burst of protein sequence evolution and a prolonged period of asymmetric evolution follow gene duplication in yeast. Genome Res. 18, 137–147 (2008).

Kaessmann, H. Genetics. More than just a copy. Science 325, 958–959 (2009).

Parker, H. G. et al. An expressed fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science 325, 995–998 (2009).

Andersson, D. I. & Hughes, D. Gene amplification and adaptive evolution in bacteria. Annu. Rev. Genet. 43, 167–195 (2009).

Schimke, R. T. Gene amplification in cultured cells. J. Biol. Chem. 263, 5989–5992 (1988).

Papp, B., Pal, C. & Hurst, L. D. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. Nature 429, 661–664 (2004).

Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nature Genet. 39, 1256–1260 (2007).

Fablet, M., Bueno, M., Potrzebowski, L. & Kaessmann, H. Evolutionary origin and functions of retrogene introns. Mol. Biol. Evol. 26, 2147–2156 (2009).

Jablonka, E. & Lamb, M. J. Epigenetic Inheritance and Evolution: The Lamarckian Dimension (Oxford Univ. Press, Oxford, UK, 1995).

Steele, E. J., Lindley, R. A. & Blanden, R. V. Lamarck's Signature: How Retrogenes Are Changing Darwin's Natural Selection Paradigm, (Allen & Unwin; Perseus Books, Australia, 1988).

Chen, G. K. et al. Preferential expression of a mutant allele of the amplified MDR1 (ABCB1) gene in drug-resistant variants of a human sarcoma. Genes Chromosomes Cancer 34, 372–383 (2002).

Qian, W. & Zhang, J. Gene dosage and gene duplicability. Genetics 179, 2319–2324 (2008).

Goldsmith, M. & Tawfik, D. S. Potential role of phenotypic mutations in the evolution of protein expression and stability. Proc. Natl Acad. Sci. USA 106, 6197–6202 (2009).

Siu, L. K., Ho, P. L., Yuen, K. Y., Wong, S. S. & Chau, P. Y. Transferable hyperproduction of TEM-1 β-lactamase in Shigella flexneri due to a point mutation in the pribnow box. Antimicrob. Agents Chemother. 41, 468–470 (1997).

Hall, B. G. Evolution of a regulated operon in the laboratory. Genetics 101, 335–344 (1982).

Hall, B. G. The EBG system of E. coli: origin and evolution of a novel β-galactosidase for the metabolism of lactose. Genetica 118, 143–156 (2003).

Stoebel, D. M., Dean, A. M. & Dykhuizen, D. E. The cost of expression of Escherichia coli lac operon proteins is in the process, not in the products. Genetics 178, 1653–1660 (2008).

Wagner, A. Energy constraints on the evolution of gene expression. Mol. Biol. Evol. 22, 1365–1374 (2005).

Vavouri, T., Semple, J. I., Garcia-Verdugo, R. & Lehner, B. Intrinsic protein disorder and interaction promiscuity are widely associated with dosage sensitivity. Cell 138, 198–208 (2009).

Veitia, R. A. Gene dosage balance: deletions, duplications and dominance. Trends Genet. 21, 33–35 (2005).

Drummond, D. A., Bloom, J. D., Adami, C., Wilke, C. O. & Arnold, F. H. Why highly expressed proteins evolve slowly. Proc. Natl Acad. Sci. USA 102, 14338–14343 (2005).

Fares, M. A., Ruiz- González, M. X., Moya, A., Elena, S. F. & Barrio, E. Endosymbiotic bacteria: GroEL buffers against deleterious mutations. Nature 417, 398 (2002).

Rutherford, S., Hirate, Y. & Swalla, B. J. The Hsp90 capacitor, developmental remodeling, and evolution: the robustness of gene networks and the curious evolvability of metamorphosis. Crit. Rev. Biochem. Mol. Biol. 42, 355–372 (2007).

Cowen, L. E. & Lindquist, S. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. Science 309, 2185–2189 (2005).

Parent, K. N., Ranaghan, M. J. & Teschke, C. M. A second-site suppressor of a folding defect functions via interactions with a chaperone network to improve folding and assembly in vivo. Mol. Microbiol. 54, 1036–1050 (2004).

Tokuriki, N. & Tawfik, D. S. Chaperonin overexpression promotes genetic variation and enzyme evolution. Nature 459, 668–673 (2009).

Zhang, L. & Watson, L. T. Analysis of the fitness effect of compensatory mutations. HFSP J. 3, 47–54 (2009).

Bershtein, S., Goldin, K. & Tawfik, D. S. Intense neutral drifts yield robust and evolvable consensus proteins. J. Mol. Biol. 379, 1029–1044 (2008).

Hecky, J., Mason, J. M., Arndt, K. M. & Muller, K. M. A general method of terminal truncation, evolution, and re-elongation to generate enzymes of enhanced stability. Methods Mol. Biol. 352, 275–304 (2007).

Kather, I., Jakob, R. P., Dobbek, H. & Schmid, F. X. Increased folding stability of TEM-1 β-lactamase by in vitro selection. J. Mol. Biol. 383, 238–251 (2008).

Marciano, D. C. et al. Genetic and structural characterization of an L201P global suppressor substitution in TEM-1 β-lactamase. J. Mol. Biol. 384, 151–164 (2008).

Kimura, M. The role of compensatory neutral mutations in molecular evolution. J. Genet. 64, 7–19 (1985).

Bloom, J. D., Labthavikul, S. T., Otey, C. R. & Arnold, F. H. Protein stability promotes evolvability. Proc. Natl Acad. Sci. USA 103, 5869–5874 (2006).

McIntosh, B. E., Hogenesch, J. B. & Bradfield, C. A. Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annu. Rev. Physiol. 72, 625–645 (2010).

Lynch, M. Genomics. Gene duplication and evolution. Science 297, 945–947 (2002).

Beckmann, J. S., Estivill, X. & Antonarakis, S. E. Copy number variants and genetic traits: closer to the resolution of phenotypic to genotypic variability. Nature Rev. Genet. 8, 639–646 (2007).

Hastings, P. J., Lupski, J. R., Rosenberg, S. M. & Ira, G. Mechanisms of change in gene copy number. Nature Rev. Genet. 10, 551–564 (2009).

Liao, B. Y. & Zhang, J. Null mutations in human and mouse orthologs frequently result in different phenotypes. Proc. Natl Acad. Sci. USA 105, 6987–6992 (2008).

Ohno, S. Evolution by Gene Duplication (Allen & Unwin; Springer, New York, 1970).

Kimura, M. & Ota, T. On some principles governing molecular evolution. Proc. Natl Acad. Sci. USA 71, 2848–2852 (1974).

Zhang, J. Evolution by gene duplication: an update. Trends Ecol. Evol. 18, 292–298 (2003).

Hughes, A. L. Adaptive evolution after gene duplication. Trends Genet. 18, 433–434 (2002).

Lynch, M. & Katju, V. The altered evolutionary trajectories of gene duplicates. Trends Genet. 20, 544–549 (2004).

Kondrashov, F. A. & Koonin, E. V. A common framework for understanding the origin of genetic dominance and evolutionary fates of gene duplications. Trends Genet. 20, 287–290 (2004).

Bergthorsson, U., Andersson, D. I. & Roth, J. R. Ohno's dilemma: evolution of new genes under continuous selection. Proc. Natl Acad. Sci. USA 104, 17004–17009 (2007).

Kondrashov, F. A. In search of the limits of evolution. Nature Genet. 37, 9–10 (2005).

Boehr, D. D., Nussinov, R. & Wright, P. E. The role of dynamic conformational ensembles in biomolecular recognition. Nature Chem. Biol. 5, 789–796 (2009).

Piatigorsky, J. et al. Gene sharing by D-crystallin and argininosuccinate lyase. Proc. Natl Acad. Sci. USA 85, 3479–3483 (1988).

Piatigorsky, J. Gene Sharing and Evolution: The Diversity of Protein Functions, (Harvard Univ. Press, Cambridge, Massachusetts, USA; London, UK, 2007).

Lee, Y. N., Nechushtan, H., Figov, N. & Razin, E. The function of lysyl-tRNA synthetase and Ap4A as signaling regulators of MITF activity in FceRI-activated mast cells. Immunity 20, 145–151 (2004).

Sedlak, T. W. & Snyder, S. H. Messenger molecules and cell death: therapeutic implications. JAMA 295, 81–89 (2006).

Rosenberg, H. F. RNase A ribonucleases and host defense: an evolving story. J. Leukoc. Biol. 83, 1079–1087 (2008).

Jensen, R. A. Enzyme recruitment in evolution of new function. Annu. Rev. Microbiol. 30, 409–425 (1974).

O'Brien, P. J. & Herschlag, D. Catalytic promiscuity and the evolution of new enzymatic activities. Chem. Biol. 6, R91–R105 (1999).

Palmer, D. R. et al. Unexpected divergence of enzyme function and sequence: 'N-acylamino acid racemase' is o-succinylbenzoate synthase. Biochemistry 38, 4252–4258 (1999).

James, L. C. & Tawfik, D. S. Catalytic and binding poly-reactivities shared by two unrelated proteins: the potential role of promiscuity in enzyme evolution. Protein Sci. 10, 2600–2607 (2001).

Afriat, L., Roodveldt, C., Manco, G. & Tawfik, D. S. The latent promiscuity of newly identified microbial lactonases is linked to a recently diverged phosphotriesterase. Biochemistry 45, 13677–13686 (2006).

Copley, S. D. Evolution of efficient pathways for degradation of anthropogenic chemicals. Nature Chem. Biol. 5, 559–566 (2009).

Copley, S. D. Comprehensive Natural Products II: Chemistry and Biology (eds Mander, L. & Liu, H.-W.) (Elsevier, Oxford, 2010).

Hughes, A. L. The evolution of functionally novel proteins after gene duplication. Proc. Biol. Sci. 256, 119–124 (1994).

Barkman, T. & Zhang, J. Evidence for escape from adaptive conflict? Nature 462, e1; discussion e2–e3 (2009).

Des Marais, D. L. & Rausher, M. D. Escape from adaptive conflict after duplication in an anthocyanin pathway gene. Nature 454, 762–765 (2008).

Lynch, M. & Force, A. The probability of duplicate gene preservation by subfunctionalization. Genetics 154, 459–473 (2000).

Dykhuizen, D. & Hartl, D. L. Selective neutrality of 6PGD allozymes in E. coli and the effects of genetic background. Genetics 96, 801–817 (1980).

Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).

Nei, M. The new mutation theory of phenotypic evolution. Proc. Natl Acad. Sci. USA 104, 12235–12242 (2007).

Wagner, A. Robustness and Evolvability in Living Systems (Princeton Univ. Press, Princeton, USA, 2005).

Schuster, P. & Fontana, W. Chance and necessity in evolution: lessons from RNA. Physica D 133, 427–452 (1999).

Wroe, R., Chan, H. S. & Bornberg-Bauer, E. A structural model of latent evolutionary potentials underlying neutral networks in proteins. HFSP J. 1, 79–87 (2007).

Klassen, J. L. Pathway evolution by horizontal transfer and positive selection is accommodated by relaxed negative selection upon upstream pathway genes in purple bacterial carotenoid biosynthesis. J. Bacteriol. 191, 7500–7508 (2009).

Wloch, D. M., Szafraniec, K., Borts, R. H. & Korona, R. Direct estimate of the mutation rate and the distribution of fitness effects in the yeast Saccharomyces cerevisiae. Genetics 159, 441–452 (2001).

Kivisaar, M. Degradation of nitroaromatic compounds: a model to study evolution of metabolic pathways. Mol. Microbiol. 74, 777–781 (2009).

Wackett, L. P. Questioning our perceptions about evolution of biodegradative enzymes. Curr. Opin. Microbiol. 12, 244–251 (2009).

Newcomb, R. D., Gleeson, D. M., Yong, C. G., Russell, R. J. & Oakeshott, J. G. Multiple mutations and gene duplications conferring organophosphorus insecticide resistance have been selected at the Rop-1 locus of the sheep blowfly, Lucilia cuprina. J. Mol. Evol. 60, 207–220 (2005).

Patzoldt, W. L., Hager, A. G., McCormick, J. S. & Tranel, P. J. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc. Natl Acad. Sci. USA 103, 12329–12334 (2006).

O'Maille, P. E. et al. Quantitative exploration of the catalytic landscape separating divergent plant sesquiterpene synthases. Nature Chem. Biol. 4, 617–623 (2008).

Lozovsky, E. R. et al. Stepwise acquisition of pyrimethamine resistance in the malaria parasite. Proc. Natl Acad. Sci. USA 106, 12025–12030 (2009).

Poelwijk, F. J., Kiviet, D. J., Weinreich, D. M. & Tans, S. J. Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445, 383–386 (2007).

Kondrashov, A. S., Sunyaev, S. & Kondrashov, F. A. Dobzhansky–Muller incompatibilities in protein evolution. Proc. Natl Acad. Sci. USA 99, 14878–14883 (2002).

Weinreich, D. M., Delaney, N. F., Depristo, M. A. & Hartl, D. L. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 312, 111–114 (2006).