Mutational Signature Analysis Reveals NTHL1 Deficiency to Cause a Multi-tumor Phenotype

Cancer Cell - Tập 35 - Trang 256-266.e5 - 2019
Judith E. Grolleman1, Richarda M. de Voer1, Fadwa A. Elsayed2, Maartje Nielsen3, Robbert D.A. Weren1, Claire Palles4, Marjolijn J.L. Ligtenberg1,5, Janet R. Vos6, Sanne W. ten Broeke3, Noel F.C.C. de Miranda2, Renske A. Kuiper1, Eveline J. Kamping1, Erik A.M. Jansen1, M. Elisa Vink-Börger5, Isabell Popp7, Alois Lang8, Isabel Spier9,10, Robert Hüneburg10,11, Paul A. James12, Na Li13,14
1Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
2Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
3Department of Clinical Genetics, Leiden University Medical Center, 2300 RC Leiden, the Netherlands
4Molecular and Population Genetics Laboratory, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
5Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
6Department of Human Genetics, Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA Nijmegen, the Netherlands
7Department of Human Genetics, University of Würzburg, 97074 Würzburg, Germany
8Vorarlberg Cancer Registry, Agency for Preventive and Social Medicine, Bregenz 6900, Austria
9Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany
10Center for Hereditary Tumor Syndromes, University of Bonn, 53127 Bonn, Germany
11Department of Internal Medicine I, University of Bonn, 53127 Bonn, Germany
12Familial Cancer Centre, Peter MacCallum Cancer Centre, Melbournem, VIC 3000, Australia
13Cancer Genetics Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
14Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia

Tài liệu tham khảo

Adam, 2016, Exome sequencing identifies biallelic MSH3 germline mutations as a recessive subtype of colorectal adenomatous polyposis, Am. J. Hum. Genet., 99, 337, 10.1016/j.ajhg.2016.06.015 Al-Tassan, 2002, Inherited variants of MYH associated with somatic G: C-->T: a mutations in colorectal tumors, Nat. Genet., 30, 227, 10.1038/ng828 Alexandrov, 2013, Signatures of mutational processes in human cancer, Nature, 500, 415, 10.1038/nature12477 Barrow, 2009, Cumulative lifetime incidence of extracolonic cancers in Lynch syndrome: a report of 121 families with proven mutations, Clin. Genet., 75, 141, 10.1111/j.1399-0004.2008.01125.x Belhadj, 2017, Delineating the phenotypic spectrum of the NTHL1-associated polyposis, Clin. Gastroenterol. Hepatol., 15, 461, 10.1016/j.cgh.2016.09.153 Bellido, 2016, POLE and POLD1 mutations in 529 kindred with familial colorectal cancer and/or polyposis: review of reported cases and recommendations for genetic testing and surveillance, Genet. Med., 18, 325, 10.1038/gim.2015.75 Boyle, 2014, MIPgen: optimized modeling and design of molecular inversion probes for targeted resequencing, Bioinformatics, 30, 2670, 10.1093/bioinformatics/btu353 Briggs, 2013, Germline and somatic polymerase epsilon and delta mutations define a new class of hypermutated colorectal and endometrial cancers, J. Pathol., 230, 148, 10.1002/path.4185 Chubb, 2016, Rare disruptive mutations and their contribution to the heritable risk of colorectal cancer, Nat. Commun., 7, 11883, 10.1038/ncomms11883 Comprehensive Cancer Center the Netherlands: Dutch cancer incidence. (2018). Available at: http://www.cijfersoverkanker.nl. COSMIC. Signatures probabilities. (2018). Available at: http://cancer.sanger.ac.uk/cancergenome/assets/signatures_probabilities.txt. Drost, 2017, Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer, Science, 358, 234, 10.1126/science.aao3130 Fostira, 2018, Extending the clinical phenotype associated with biallelic NTHL1 germline mutations, Clin. Genet., 94, 588, 10.1111/cge.13444 Gaujoux, 2010, A flexible R package for nonnegative matrix factorization, BMC Bioinformatics, 11, 367, 10.1186/1471-2105-11-367 Kempers, 2011, Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome: a cohort study, Lancet Oncol., 12, 49, 10.1016/S1470-2045(10)70265-5 Lange, 1988, Programs for pedigree analysis: MENDEL, FISHER, and dGENE, Genet. Epidemiol., 5, 471, 10.1002/gepi.1370050611 Lawrence, 2013, Software for computing and annotating genomic ranges, PLoS Comput. Biol., 9, e1003118, 10.1371/journal.pcbi.1003118 Li, 2016, Reevaluation of RINT1 as a breast cancer predisposition gene, Breast Cancer Res. Treat., 159, 385, 10.1007/s10549-016-3944-3 de Ligt, 2012, Diagnostic exome sequencing in persons with severe intellectual disability, N. Engl. J. Med., 367, 1921, 10.1056/NEJMoa1206524 National Comprehensive Cancer Network (2018). NCCN Clinical Practice Guidelines in Oncology, Genetic/Familial High-Risk Assessment: Colorectal. Available at: https://www.nccn.org/professionals/physician_gls/pdf/genetics_colon.pdf. Nguyen-Dumont, 2013, A high-plex PCR approach for massively parallel sequencing, Biotechniques, 55, 69, 10.2144/000114052 Nguyen-Dumont, 2013, Hi-Plex for high-throughput mutation screening: application to the breast cancer susceptibility gene PALB2, BMC Med. Genomics, 6, 48, 10.1186/1755-8794-6-48 Nielsen, 1993, MUTYH-associated polyposis Nik-Zainal, 2016, Landscape of somatic mutations in 560 breast cancer whole-genome sequences, Nature, 534, 47, 10.1038/nature17676 O'Roak, 2012, Multiplex targeted sequencing identifies recurrently mutated genes in autism spectrum disorders, Science, 338, 1619, 10.1126/science.1227764 Palles, 2013, Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas, Nat. Genet., 45, 136, 10.1038/ng.2503 Pilati, 2017, Mutational signature analysis identifies MUTYH deficiency in colorectal cancers and adrenocortical carcinomas, J. Pathol., 242, 10, 10.1002/path.4880 R Core Team, 2016 Rivera, 2015, Biallelic NTHL1 mutations in a woman with multiple primary tumors, N. Engl. J. Med., 373, 1985, 10.1056/NEJMc1506878 Rosenthal, 2016, DeconstructSigs: delineating mutational processes in single tumors distinguishes DNA repair deficiencies and patterns of carcinoma evolution, Genome Biol., 17, 31, 10.1186/s13059-016-0893-4 Viel, 2017, A specific mutational signature associated with DNA 8-oxoguanine persistence in MUTYH-defective colorectal cancer, EBioMedicine, 20, 39, 10.1016/j.ebiom.2017.04.022 de Voer, 2016, Identification of novel candidate genes for early-onset colorectal cancer susceptibility, PLoS Genet., 12, e1005880, 10.1371/journal.pgen.1005880 Vogt, 2009, Expanded extracolonic tumor spectrum in MUTYH-associated polyposis, Gastroenterology, 137, 1976, 10.1053/j.gastro.2009.08.052 Watson, 2008, The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome, Int. J. Cancer, 123, 444, 10.1002/ijc.23508 Weren, 2015, A germline homozygous mutation in the base-excision repair gene NTHL1 causes adenomatous polyposis and colorectal cancer, Nat. Genet., 47, 668, 10.1038/ng.3287 Weren, 2018, NTHL1 and MUTYH polyposis syndromes: two sides of the same coin?, J. Pathol., 244, 135, 10.1002/path.5002 Win, 2011, Cancer risks for monoallelic MUTYH mutation carriers with a family history of colorectal cancer, Int. J. Cancer, 129, 2256, 10.1002/ijc.25870 Win, 2014, Risk of colorectal cancer for carriers of mutations in MUTYH, with and without a family history of cancer, Gastroenterology, 146, 1208, 10.1053/j.gastro.2014.01.022