Mutation in Eth A protein of Mycobacterium tuberculosis conferred drug tolerance against enthinoamide in Mycobacterium smegmatis mc2155

Computational Biology and Chemistry - Tập 98 - Trang 107677 - 2022
Pradeep Kumar Anand1, Arbind Kumar1,2, Amrit Saini1, Jagdeep Kaur1
1Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India
2COVID-19 Testing Facility, CSIR-Institute of Himalyan Bioresource and Technology, Palampur, India

Tài liệu tham khảo

Aggarwal, 2018, Role of pncA gene mutations W68R and W68G in pyrazinamide resistance, J. Cell. Biochem., 119, 2567, 10.1002/jcb.26420 Ang, 2017, EthA/R-independent killing of Mycobacterium tuberculosis by ethionamide, Front. Microbiol., 8, 10.3389/fmicb.2017.00710 Banerjee, 1994, inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis, Science, 263, 227, 10.1126/science.8284673 Berendsen, 1984, Molecular dynamics with coupling to an external bath, J. Chem. Phys., 81, 3684, 10.1063/1.448118 Colovos, 1993, Verification of protein structures: patterns of nonbonded atomic interactions, Protein Sci., 2, 1511, 10.1002/pro.5560020916 Connolly, 1983, Analytical molecular surface calculation, J. Appl. Crystallogr., 16, 548, 10.1107/S0021889883010985 da Silva, 2018, Integrated analysis of ethionamide resistance loci in Mycobacterium tuberculosis clinical isolates, Tuberculosis, 113, 163, 10.1016/j.tube.2018.08.010 Darden, 1993, Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems, J. Chem. Phys., 98, 10089, 10.1063/1.464397 De Welzen, 2017, Whole-transcriptome and -genome analysis of extensively drug-resistant Mycobacterium tuberculosis clinical isolates identifies downregulation of ethA as a mechanism of ethionamide resistance, Antimicrob. Agents Chemother., 61, 10.1128/AAC.01461-17 Doss, 2012, Screening of mutations affecting protein stability and dynamics of FGFR1-A simulation analysis, Appl. Transl. Genom., 1, 37 Dundas, 2006, CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues, Nucleic Acids Res., 34, 10.1093/nar/gkl282 Eswar, 2006, Comparative protein structure modeling using modeller, Curr. Protoc. Bioinform., 15, 10.1002/0471250953.bi0506s15 Feig, 2016, Protein structure refinement via molecular-dynamics simulations: what works and what does not?, Proteins Struct. Funct. Bioinform., 84, 282, 10.1002/prot.24871 Hicks, 2019, Bacterial genome-wide association identifies novel factors that contribute to ethionamide and prothionamide susceptibility in mycobacterium tuberculosis, MBio, 10, 10.1128/mBio.00616-19 Hollingsworth, 2010, A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins, Biomol. Concepts, 1, 271, 10.1515/bmc.2010.022 Korduláková, 2007, Isoxyl activation is required for bacteriostatic activity against Mycobacterium tuberculosis, Antimicrob. Agents Chemother., 51, 3824, 10.1128/AAC.00433-07 Kumar, 2020, Molecular dynamics assisted mechanistic insight of Val430-Ala mutation of Rv1592c Protein in isoniazid resistant mycobacterium tuberculosis, Curr. Comput. Aided Drug Des., 17, 95, 10.2174/1573409916666200115120051 Laskowski, 1993, PROCHECK: a program to check the stereochemical quality of protein structures, J. Appl. Crystallogr., 26, 283, 10.1107/S0021889892009944 Laskowski, 2011, LigPlot+: multiple ligand-protein interaction diagrams for drug discovery, J. Chem. Inf. Model., 51, 2778, 10.1021/ci200227u Lee, 1971, The interpretation of protein structures: estimation of static accessibility, J. Mol. Biol., 55, 10.1016/0022-2836(71)90324-X Marrakchi, 2014, Mycolic acids: structures, biosynthesis, and beyond, Chem. Biol., 21, 67, 10.1016/j.chembiol.2013.11.011 Morlock, 2003, ethA, inhA, and katG loci of ethionamide-resistant clinical Mycobacterium tuberculosis Isolates, Antimicrob. Agents Chemother., 47, 3799, 10.1128/AAC.47.12.3799-3805.2003 Morris, 2009, Software news and updates AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem., 30, 2785, 10.1002/jcc.21256 Newton, 2003, The glycosyltransferase gene encoding the enzyme catalyzing the first step of mycothiol biosynthesis (mshA), J. Bacteriol., 185, 3476, 10.1128/JB.185.11.3476-3479.2003 O’Boyle, 2011, The relation between emotional intelligence and job performance: a meta-analysis, J. Organ. Behav., 32, 788, 10.1002/job.714 Oostenbrink, 2005, Validation of the 53A6 GROMOS force field, Eur. Biophys. J., 34, 273, 10.1007/s00249-004-0448-6 Pandey, 2019, Novel missense mutations in gidB gene associated with streptomycin resistance in Mycobacterium tuberculosis: insights from molecular dynamics, J. Biomol. Struct. Dyn., 37, 20, 10.1080/07391102.2017.1417913 Pandey, 2017, Double mutants in DNA gyrase lead to ofloxacin resistance in Mycobacterium tuberculosis, J. Cell. Biochem., 118, 2950, 10.1002/jcb.25954 Parrinello, 1981, Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys., 52, 7182, 10.1063/1.328693 Pronk, 2013, GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics, 29, 845, 10.1093/bioinformatics/btt055 Schüttelkopf, 2004, PRODRG: A tool for high-throughput crystallography of protein-ligand complexes, Acta Crystallogr. Sect. D Biol. Crystallogr., 60, 1355, 10.1107/S0907444904011679 Singh, 2018, Wild-type catalase peroxidase vs G279D mutant type: Molecular basis of Isoniazid drug resistance in Mycobacterium tuberculosis, Gene, 641, 226, 10.1016/j.gene.2017.10.047 Vale, 2012, Metabolism of the antituberculosis drug ethionamide, Curr. Drug Metab., 14, 151, 10.2174/1389200211309010151 Vilchèze, 2014, Resistance to Isoniazid and ethionamide in mycobacterium tuberculosis: genes, mutations, and causalities, Microbiol. Spectr., 2, 10.1128/microbiolspec.MGM2-0014-2013 Vilchèze, 2008, Mycothiol biosynthesis is essential for ethionamide susceptibility in Mycobacterium tuberculosis, Mol. Microbiol., 69, 1316, 10.1111/j.1365-2958.2008.06365.x WHO, 2020. Global Tuberculosis Report 2020, World Heal. Organ. 66 (2020) 1–175. 〈http://apps.who.int/bookorders〉. (Accessed 14 March 2021).