Mutant p53 on the Path to Metastasis

Trends in Cancer - Tập 6 - Trang 62-73 - 2020
Qiaosi Tang1,2, Zhenyi Su2, Wei Gu2, Anil K. Rustgi2
1Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
2Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA

Tài liệu tham khảo

Gupta, 2006, Review cancer metastasis: building a framework, Cell, 127, 679, 10.1016/j.cell.2006.11.001 Lambert, 2016, Review emerging biological principles of metastasis, Cell, 168, 670, 10.1016/j.cell.2016.11.037 Powell, 2014, Contribution of p53 to metastasis, Cancer Discov., 4, 405, 10.1158/2159-8290.CD-13-0136 Alderton, 2017, Tumour evolution: epigenetic and genetic heterogeneity in metastasis, Nat. Rev. Cancer, 17, 141, 10.1038/nrc.2017.11 Kandoth, 2013, Mutational landscape and significance across 12 major cancer types, Nature, 502, 333, 10.1038/nature12634 Rivlin, 2011, Mutations in the p53 tumor suppressor gene: important milestones at the various steps of tumorigenesis, Genes Cancer, 2, 466, 10.1177/1947601911408889 Muller, 2014, Perspective mutant p53 in cancer: new functions and therapeutic opportunities, Cancer Cell, 25, 304, 10.1016/j.ccr.2014.01.021 Malkin, 2011, Li-Fraumeni syndrome, Genes Cancer, 2, 475, 10.1177/1947601911413466 Olive, 2004, Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome, Cell, 119, 847, 10.1016/j.cell.2004.11.004 Lang, 2004, Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome, Cell, 119, 861, 10.1016/j.cell.2004.11.006 Tsai, 2013, Epithelial–mesenchymal plasticity in carcinoma metastasis, Genes Dev., 27, 2192, 10.1101/gad.225334.113 Lamouille, 2014, Molecular mechanisms of epithelial-mesenchymal transition, Nat. Rev. Mol. Cell Biol., 15, 178, 10.1038/nrm3758 Dongre, 2019, New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer, Nat. Rev. Mol. Cell Biol., 20, 69, 10.1038/s41580-018-0080-4 Dong, 2013, Mutant p53 gain-of-function induces epithelial–mesenchymal transition through modulation of the miR-130b–ZEB1 axis, Oncogene, 32, 3286, 10.1038/onc.2012.334 Roger, 2010, Gain of oncogenic function of p53 mutants regulates E-cadherin expression uncoupled from cell invasion in colon cancer cells, J. Cell Sci., 123, 1295, 10.1242/jcs.061002 Ohashi, 2010, Epidermal growth factor receptor and mutant p53 expand an esophageal cellular subpopulation capable of epithelial-to-mesenchymal transition through ZEB transcription factors, Cancer Res., 70, 4174, 10.1158/0008-5472.CAN-09-4614 Wang, 2009, p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug, Nat. Cell Biol., 11, 694, 10.1038/ncb1875 Kogan-Sakin, 2010, Mutant p53 R175H upregulates Twist1 expression and promotes epithelial–mesenchymal transition in immortalized prostate cells, Cell Death Differ., 18, 271, 10.1038/cdd.2010.94 Adorno, 2009, A mutant-p53/Smad complex opposes p63 to empower TGFbeta -induced metastasis, Cell, 137, 87, 10.1016/j.cell.2009.01.039 Neilsen, 2012, Mutant p53 drives invasion in breast tumors through up-regulation of miR-155, Oncogene, 32, 2992, 10.1038/onc.2012.305 Kalo, 2007, Mutant p53 attenuates the SMAD-dependent transforming growth factor beta 1 (TGF-beta 1) signaling pathway by repressing the expression of TGF-beta receptor type II, Mol. Cell. Biol., 27, 8228, 10.1128/MCB.00374-07 Ali, 2013, Differential regulation of the REGγ–proteasome pathway by p53/TGF-β signalling and mutant p53 in cancer cells, Nat. Commun., 4, 2667, 10.1038/ncomms3667 Ji, 2015, Mutant p53 promotes tumor cell malignancy by both positive and negative regulation of the transforming growth factor β (TGF-β) pathway, J. Biol. Chem., 290, 11729, 10.1074/jbc.M115.639351 Meng, 2010, Smad2 protects against TGF-β/Smad3-mediated renal fibrosis, J. Am. Soc. Nephrol., 21, 1477, 10.1681/ASN.2009121244 Machesky, 2008, Lamellipodia and filopodia in metastasis and invasion, FEBS Lett., 582, 2102, 10.1016/j.febslet.2008.03.039 Kerber, 2011, Myosin-X: a MyTH-FERM myosin at the tips of filopodia, J. Cell Sci., 124, 3733, 10.1242/jcs.023549 Arjonen, 2014, Mutant p53–associated myosin-X upregulation promotes breast cancer invasion and metastasis, J. Clin. Invest., 124, 1069, 10.1172/JCI67280 Ridley, 1992, The small GTP-binding protein rat regulates growth factor-induced membrane, Cell, 70, 401, 10.1016/0092-8674(92)90164-8 Ridley, 1992, The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors, Cell, 70, 389, 10.1016/0092-8674(92)90163-7 Timpson, 2011, Spatial regulation of RhoA activity during pancreatic cancer cell invasion driven by mutant p53, Cancer Res., 71, 747, 10.1158/0008-5472.CAN-10-2267 Eble, 2019, The extracellular matrix in tumor progression and metastasis, Clin. Exp. Metastasis, 36, 171, 10.1007/s10585-019-09966-1 Lu, 2012, The extracellular matrix: a dynamic niche in cancer progression, J. Cell Biol., 196, 395, 10.1083/jcb.201102147 Hamidi, 2018, Every step of the way: integrins in cancer progression and metastasis, Nat. Rev. Cancer, 18, 533, 10.1038/s41568-018-0038-z Ganguly, 2013, Integrins and metastasis, Cell Adh. Migr., 7, 251, 10.4161/cam.23840 Muller, 2009, Mutant p53 drives invasion by promoting integrin recycling, Cell, 139, 1327, 10.1016/j.cell.2009.11.026 Caswell, 2008, Endocytic transport of integrins during cell migration and invasion, Trends Cell Biol., 18, 257, 10.1016/j.tcb.2008.03.004 Selivanova, 2009, Previews integrins and mutant p53 on the road to metastasis, Cell, 63, 1220, 10.1016/j.cell.2009.12.016 Kölbl, 2015, The role of glycosylation in breast cancer metastasis and cancer, Front. Oncol., 5, 219, 10.3389/fonc.2015.00219 Singh, 2018, Integrin expression and glycosylation patterns regulate cell-matrix adhesion and alter with breast cancer progression, Biochem. Biophys. Res. Commun., 499, 374, 10.1016/j.bbrc.2018.03.169 Vogiatzi, 2016, Mutant p53 promotes tumor progression and metastasis by the endoplasmic reticulum, Proc. Natl. Acad. Sci. U.S.A., 53, E8433, 10.1073/pnas.1612711114 Muller-Tidow, 2005, Identification of metastasis-associated receptor tyrosine kinases in non–small cell lung cancer, Cancer Res., 65, 1778, 10.1158/0008-5472.CAN-04-3388 Lemmon, 2010, Cell signaling by receptor tyrosine kinases, Cell, 141, 1117, 10.1016/j.cell.2010.06.011 Sasaki, 2013, The role of epidermal growth factor receptor in cancer metastasis and microenvironment, Biomed. Res. Int., 2013, 546318, 10.1155/2013/546318 Weissmueller, 2013, Mutant p53 drives pancreatic cancer metastasis through cell-autonomous PDGF receptor β signaling, Cell, 157, 382, 10.1016/j.cell.2014.01.066 Dai, 2010, Platelet-derived growth factor receptor tyrosine kinase inhibitors: a review of the recent patent literature, Expert Opin. Ther. Pat., 20, 885, 10.1517/13543776.2010.493559 Trusolino, 2010, MET signalling: principles and functions in development, organ regeneration and cancer, Nat. Rev. Mol. Cell Biol., 11, 834, 10.1038/nrm3012 Benvenuti, 2007, The MET receptor tyrosine kinase in invasion and metastasis, J. Cell Physiol., 213, 316, 10.1002/jcp.21183 Sennino, 2012, Suppression of tumor invasion and metastasis by concurrent inhibition of c-met and VEGF signaling in pancreatic neuroendocrine tumors, Cancer Discov., 2, 270, 10.1158/2159-8290.CD-11-0240 Grugan, 2013, A common p53 mutation (R175H) activates c-Met receptor tyrosine kinase to enhance tumor cell invasion, Cancer Biol. Ther., 14, 835, 10.4161/cbt.25406 Muller, 2013, Mutant p53 enhances MET trafficking and signalling to drive cell scattering and invasion, Oncogene, 32, 1252, 10.1038/onc.2012.148 Lobb, 2017, Exosomes: key mediators of metastasis and pre-metastatic niche formation, Semin. Cell Dev. Biol., 67, 3, 10.1016/j.semcdb.2017.01.004 Weidle, 2017, The multiple roles of exosomes in metastasis, Cancer Genomics Proteomics, 14, 1, 10.21873/cgp.20015 Steinbichler, 2017, The role of exosomes in cancer metastasis, Semin. Cancer Biol., 44, 170, 10.1016/j.semcancer.2017.02.006 Novo, 2018, Mutant p53s generate pro-invasive niches by influencing exosome podocalyxin levels, Nat. Commun., 9, 5069, 10.1038/s41467-018-07339-y Cooks, 2018, Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246, Nat. Commun., 9, 771, 10.1038/s41467-018-03224-w Huang, 2018, Long non-coding RNAs in metastasis, Cancer Metastasis Rev., 37, 75, 10.1007/s10555-017-9713-x Kim, 2018, MicroRNAs and metastasis: small RNAs play big roles, Cancer Metastasis Rev., 37, 5, 10.1007/s10555-017-9712-y Subramanian, 2015, A mutant p53 / let-7i-axis-regulated gene network drives cell migration, invasion and metastasis, Oncogene, 34, 1094, 10.1038/onc.2014.46 Gutschner, 2013, The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells, Cancer Res., 73, 1180, 10.1158/0008-5472.CAN-12-2850 Pruszko, 2017, The mutant p53-ID4 complex controls VEGFA isoforms by recruiting lncRNA MALAT1, EMBO Rep., 18, 1331, 10.15252/embr.201643370 Vander Heiden, 2017, Understanding the intersections between metabolism and cancer biology, Cell, 168, 657, 10.1016/j.cell.2016.12.039 Lehuede, 2016, Metabolic plasticity as a determinant of tumor growth and metastasis, Cancer Res., 76, 5201, 10.1158/0008-5472.CAN-16-0266 Mantovani, 2019, Mutant p53 as a guardian of the cancer cell, Cell Death Differ., 26, 199, 10.1038/s41418-018-0246-9 Zhang, 2013, Tumour-associated mutant p53 drives the Warburg effect, Nat. Commun., 4, 2935, 10.1038/ncomms3935 Freed-pastor, 2012, Mutant p53: one name, many proteins, Genes Dev., 26, 1268, 10.1101/gad.190678.112 Basu, 2018, Mutant p53 controls tumor metabolism and metastasis by regulating PGC-1 α, Genes Dev., 32, 230, 10.1101/gad.309062.117 Kim, 2018, Mutant p53 partners in crime, Cell Death Differ., 25, 161, 10.1038/cdd.2017.185 Melino, 2011, p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53, Cell Death Differ., 18, 1487, 10.1038/cdd.2011.81 Gaiddon, 2001, A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain, Mol. Cell. Biol., 21, 1874, 10.1128/MCB.21.5.1874-1887.2001 Strano, 2002, Physical interaction with human tumor-derived p53 mutants inhibits p63 activities, J. Biol. Chem., 277, 18817, 10.1074/jbc.M201405200 Como, 1999, p73 function is inhibited by tumor-derived p53 mutants in mammalian cells, Mol. Cell. Biol., 19, 1438, 10.1128/MCB.19.2.1438 Strano, 2000, Physical and functional interaction between p53 mutants and different isoforms of p73, J. Biol. Chem., 275, 29503, 10.1074/jbc.M003360200 Chicas, 2000, Mutant p53 forms a complex with Sp1 on HIV-LTR DNA, Biochem. Biophys. Res. Commun., 390, 383, 10.1006/bbrc.2000.3965 Fontemaggi, 2009, The execution of the transcriptional axis mutant p53, E2F1 and ID4 promotes tumor neo-angiogenesis, Nat. Struct. Mol. Biol., 16, 1086, 10.1038/nsmb.1669 Do, 2012, Mutant p53 cooperates with ETS2 to promote etoposide resistance, Genes Dev., 26, 830, 10.1101/gad.181685.111 Pourebrahim, 2017, Integrative genome analysis of somatic p53 mutant osteosarcomas identifies Ets2-dependent regulation of small nucleolar RNAs by mutant p53 protein, Genes Dev., 31, 1847, 10.1101/gad.304972.117 Robles, 2010, Clinical outcomes and correlates of TP53 mutations and cancer, Cold. Spring Harb. Perspect. Biol., 2, a001016, 10.1101/cshperspect.a001016 Peller, 1995, p53 mutations in matched primary and metastatic human tumors, Mol. Carcinog., 13, 166, 10.1002/mc.2940130306 Ding, 2010, Genome remodelling in a basal-like breast cancer metastasis and xenograft, Nature, 464, 999, 10.1038/nature08989 Alsner, 2000, Heterogeneity in the clinical phenotype of TP53 mutations in breast cancer patients, Clin. Cancer Res., 6, 3923 Yang, 2013, The impact of p53 in predicting clinical outcome of breast cancer patients with visceral metastasis, Sci. Rep., 3, 2246, 10.1038/srep02246 Huszno, 2018, TP53 mutations and SNPs as prognostic and predictive factors in patients with breast cancer, Oncol. Lett., 16, 34 Chun, 2019, Deleterious effect of RAS and evolutionary high-risk TP53 double mutation in colorectal liver metastases, Ann. Surg., 269, 917, 10.1097/SLA.0000000000002450 Ecke, 2010, TP53 gene mutations in prostate cancer progression, Anticancer Res., 30, 1579 Ono, 2017, Dual expression of immunoreactive estrogen receptor β and p53 is a potential predictor of regional lymph node metastasis and postoperative recurrence in endometrial endometrioid carcinoma, PLoS One, 12, e0188641, 10.1371/journal.pone.0188641 Zhang, 2016, TP53 mutations in epithelial ovarian cancer, Transl. Cancer Res., 5, 650, 10.21037/tcr.2016.08.40 Kastenhuber, 2017, Putting p53 in context, Cell, 170, 1062, 10.1016/j.cell.2017.08.028 Blandino, 2018, New therapeutic strategies to treat human cancers expressing mutant p53 proteins, J. Exp. Clin. Cancer Res., 37, 30, 10.1186/s13046-018-0705-7 Zhou, 2019, Mutant p53 in cancer therapy—the barrier or the path, J. Mol. Cell. Biol., 11, 293, 10.1093/jmcb/mjy072 Bykov, 2002, Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound, Nat. Med., 8, 282, 10.1038/nm0302-282 Bykov, 2018, Mutant p53-dependent growth suppression distinguishes PRIMA-1 from known anticancer drugs: a statistical analysis of information in the National Cancer Institute database, Carcinogenesis, 23, 2011, 10.1093/carcin/23.12.2011 Wang, 2007, PRIMA-1 induces apoptosis by inhibiting JNK signaling but promoting the activation of Bax, Biochem. Biophys. Res. Commun., 352, 203, 10.1016/j.bbrc.2006.11.006 Zandi, 2011, Cancer therapy: preclinical PRIMA-1 Met/APR-246 induces apoptosis and tumor growth delay in small cell lung cancer expressing mutant p53, Clin. Cancer Res., 17, 2830, 10.1158/1078-0432.CCR-10-3168 Liang, 2009, PRIMA-1 inhibits growth of breast cancer cells by re-activating mutant p53 protein, Int. J. Oncol., 35, 1015 Saha, 2013, PRIMA-1 Met/APR-246 displays high antitumor activity in multiple myeloma by induction of p73 and noxa, Mol. Cancer Ther., 12, 2331, 10.1158/1535-7163.MCT-12-1166 Bykov, 2019, Targeting p53 in vivo: a first-in-human study with p53-targeting compound APR-246 in refractory hematologic malignancies and prostate cancer, J. Clin. Oncol., 30, 3633 Izetti, 2014, PRIMA-1, a mutant p53 reactivator, induces apoptosis and enhances chemotherapeutic cytotoxicity in pancreatic cancer cell lines, Invest. New Drugs, 32, 783, 10.1007/s10637-014-0090-9 Hoe, 2014, Drugging the p53 pathway: understanding the route to clinical efficacy, Nat. Rev. Drug Discov., 13, 217, 10.1038/nrd4236 Bykov, 2018, Targeting mutant p53 for efficient cancer therapy, Nat. Rev Cancer, 18, 89, 10.1038/nrc.2017.109 Salim, 2016, COTI-2, a novel small molecule that is active against multiple human cancer cell lines in vitro and in vivo, Oncotarget, 7, 41363, 10.18632/oncotarget.9133 Vareki, 2018, Novel anti-cancer drug COTI-2 synergizes with therapeutic agents and does not induce resistance or exhibit cross-resistance in human cancer cell lines, PLoS One, 13, e019766 Lindemann, 2019, COTI-2, a novel thiosemicarbazone derivative, exhibits antitumor activity in HNSCC through p53-dependent and -independent mechanisms, Clin. Cancer Res., 25, 5650, 10.1158/1078-0432.CCR-19-0096 Parrales, 2015, Targeting oncogenic mutant p53 for cancer therapy, Front. Oncol., 5, 288, 10.3389/fonc.2015.00288 Kravchenko, 2008, Small-molecule RETRA suppresses mutant p53-bearing cancer cells through a p73-dependent, Proc. Natl. Acad. Sci. U. S. A., 105, 6302, 10.1073/pnas.0802091105 Di Agostino, 2008, The disruption of the protein complex mutant p53/p73 increases selectively the response of tumor cells to anticancer drugs, Cell Cycle, 7, 3440, 10.4161/cc.7.21.6995 Guida, 2008, Peptide aptamers targeting mutant p53 induce apoptosis in tumor cells, Cancer Res., 68, 6550, 10.1158/0008-5472.CAN-08-0137 Malekzadeh, 2019, Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers, J. Clin. Invest., 129, 1109, 10.1172/JCI123791 Deniger, 2018, T-cell responses to TP53 “hotspot” mutations and unique neoantigens expressed by human ovarian cancers, Clin. Cancer Res., 24, 5562, 10.1158/1078-0432.CCR-18-0573 Giacomelli, 2018, Mutational processes shape the landscape of TP53 mutations in human cancer, Nat. Genet., 50, 1381, 10.1038/s41588-018-0204-y Zhu, 2015, Gain-of-function p53 mutants co-opt chromatin pathways to drive cancer growth, Nature, 525, 206, 10.1038/nature15251 Pfister, 2015, Mutant p53 cooperates with the SWI/SNF chromatin remodeling complex to regulate VEGFR2 in breast cancer cells, Genes Dev., 29, 1298, 10.1101/gad.263202.115 Rahnamoun, 2018, Mutant p53 regulates enhancer-associated H3K4 monomethylation through interactions with the methyltransferase MLL4, J. Biol. Chem., 293, 13234, 10.1074/jbc.RA118.003387 McDonald, 2017, Epigenomic reprogramming during pancreatic cancer progression links anabolic glucose metabolism to distant metastasis, Nat. Genet., 49, 367, 10.1038/ng.3753 Chatterjee, 2018, Epigenetic drivers of tumourigenesis and cancer metastasis, Semin. Cancer Biol., 51, 149, 10.1016/j.semcancer.2017.08.004