Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces

Revista Matemática Complutense - Tập 27 Số 1 - Trang 93-157 - 2014
Dachun Yang1, Wen Yuan1, Ciqiang Zhuo1
1School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875, People's Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Almeida, A., Hästö, P.: Besov spaces with variable smoothness and integrability. J. Funct. Anal. 258, 1628–1655 (2010)

Astala, K., Iwaniec, T., Koskela, P., Martin, G.: Mappings of BMO-bounded distortion. Math. Ann. 317, 703–726 (2000)

Birnbaum, Z., Orlicz, W.: Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Studia Math. 3, 1–67 (1931)

Bonami, A., Feuto, J., Grellier, S.: Endpoint for the DIV-CURL lemma in Hardy spaces. Publ. Mat. 54, 341–358 (2010)

Bonami, A., Grellier, S.: Hankel operators and weak factorization for Hardy–Orlicz spaces. Colloq. Math. 118, 107–132 (2010)

Bonami, A., Grellier, S., Ky, L.D.: Paraproducts and products of functions in BMO $$({\mathbb{R}})$$ and $$H^1(({\mathbb{R}}))$$ through wavelets. J. Math. Pure Appl. 97, 230–241 (2012)

Bonami, A., Iwaniec, T., Jones, P., Zinsmeister, M.: On the product of functions in BMO and $$H^1$$ . Ann. Inst. Fourier (Grenoble) 57, 1405–1439 (2007)

Bownik, M.: Atomic and molecular decompositions of anisotropic Besov spaces. Math. Z. 250, 539–571 (2005)

Bownik, M., Ho, K.-P.: Atomic and molecular decompositions of anisotropic Triebel–Lizorkin spaces. Trans. Am. Math. Soc. 358, 1469–1510 (2005)

Bownik, M.: Anisotropic Triebel–Lizorkin spaces with doubling measures. J. Geom. Anal. 17, 387–424 (2007)

Bownik, M., Li, B., Yang, D., Zhou, Y.: Weighted anisotropic Hardy spaces and their applications in boundedness of sublinear operators. Indiana Univ. Math. J. 57, 3065–3100 (2008)

Bui, H.Q.: Weighted Besov and Triebel spaces: interpolation by the real method. Hiroshima Math. J. 12, 581–605 (1982)

Bui, H.Q., Paluszyński, M., Taibleson, M.: A maximal function characterization of weighted Besov–Lipschitz and Triebel–Lizorkin spaces. Studia Math. 119, 219–246 (1996)

Bui, H.Q., Paluszyński, M., Taibleson, M.: Characterization of the Besov–Lipschitz and Triebel–Lizorkin spaces. The case $$q<1$$ . J. Fourier Anal. Appl. 3, 837–846 (1997)

Cho, Y.-K.: Continuous characterization of the Triebel–Lizorkin spaces and Fourier multipliers. Bull. Korean Math. Soc. 47, 839–857 (2010)

Cho, Y.-K., Kim, D.: A Fourier multiplier theorem on the Besov–Lipschitz spaces. Korean J. Math. 16, 85–90 (2008)

Dafni, G., Xiao, J.: Some new tent spaces and duality theorems for fractional Carleson measures and $$Q_\alpha ({\mathbb{R}}^n) $$ . J. Funct. Anal. 208, 377–422 (2004)

Diening, L., Hästö, P., Roudenko, S.: Function spaces of variable smoothness and integrability. J. Funct. Anal. 256, 1731–1768 (2009)

Diening, L., Harjulehto, P., Hästö, P., R $$\mathring{\rm u}$$ žička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes in Mathematics, 2017. Springer, Heidelberg (2011)

Essén, M., Janson, S., Peng, L.Z., Xiao, J.: $$Q$$ spaces of several real variables. Indiana Univ. Math. J. 49, 575–615 (2000)

Fan, M.: Lions–Peetre’s interpolation methods associated with quasi-power functions and some applications. Rocky Mt. J. Math. 36, 1487–1509 (2006)

Fernandez, D.L., Garcia, J.B.: Interpolation of Orlicz-valued function spaces and U.M.D. property. Studia Math. 99, 23–40 (1991)

Frazier, M., Jawerth, B.: Decomposition of Besov spaces. Indiana Univ. Math. J. 34, 777–799 (1985)

Frazier, M., Jawerth, B.: A discrete transform and decompositions of distribution spaces. J. Funct. Anal. 93, 34–170 (1990)

Grafakos, L., Torres, R.H.: Pseudodifferential operators with homogeneous symbols. Mich. Math. J. 46, 261–269 (1999)

Hou, S., Yang, D., Yang, S.: Lusin area function and molecular characterizations of Musielak–Orlicz Hardy spaces and their applications. arXiv:1201.1945

Hou, S., Yang, D., Yang, S.: Musielak-Orlicz BMO-type spaces associated with generalized approximations to the identity. arXiv:1303.6366 (2013)

Iwaniec, T., Onninen, J.: $$H^1$$ -estimates of Jacobians by subdeterminants. Math. Ann. 324, 341–358 (2002)

Izuki, M., Sawano, Y.: Atomic decomposition for weighted Besov and Triebel–Lizorkin spaces. Math. Nachr. 285, 103–126 (2012)

Izuki, M., Sawano, Y., Tanaka, H.: Weighted Besov–Morrey spaces and Triebel–Lizorkin spaces. In: Harmonic Analysis and Nonlinear Partial Differential Equations, RIMS Kôkyûroku Bessatsu, B22, Research Institute for Mathematical Sciences (RIMS), Kyoto, pp. 21–60 (2010)

Kozono, H., Yamazaki, M.: Semilinear heat equations and the Navier–Stokes equation with distributions in new function spaces as initial data. Commun. Partial Differ. Equ. 19, 959–1014 (1994)

Ky, L.D.: New Hardy spaces of Musielak–Orlicz type and boundedness of sublinear operators. arXiv:1103.3757

Ky, L.D.: Bilinear decompositions and commutators of singular integral operators. Trans. Am. Math. Soc. 365, 2931–2958 (2013)

Liang, Y., Huang, J., Yang, D.: New real-variable characterizations of Musielak–Orlicz Hardy spaces. J. Math. Anal. Appl. 395, 413–428 (2012)

Liang, Y., Sawano, Y., Ullrich, T., Yang, D., Yuan, W.: New characterizations of Besov–Triebel–Lizorkin–Hausdorff spaces including coorbits and wavelets. J. Fourier Anal. Appl. 18, 1067–1111 (2012)

Liu, L.: Hardy spaces via distribution spaces. Front. Math. China 2, 599–611 (2007)

Martínez, S., Wolanski, N.: A minimum problem with free boundary in Orlicz spaces. Adv. Math. 218, 1914–1971 (2008)

Mazzucato, A.: Function space theory and applications to non-linear PDE. Trans. Am. Math. Soc. 355, 1297–1369 (2003)

Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics, vol. 1034, Springer, Berlin (1983)

Nakai, E.: Pointwise multipliers on weighted BMO spaces. Studia Math. 125, 35–56 (1997)

Nakai, E., Yabuta, K.: Pointwise multipliers for functions of bounded mean oscillation. J. Math. Soc. Jpn. 37, 207–218 (1985)

Nakai, E., Sawano, Y.: Hardy spaces with variable exponents and generalized Campanato spaces. J. Funct. Anal. 262, 3665–3748 (2012)

Noi, T., Sawano, Y.: Complex interpolation of Besov spaces and Triebel–Lizorkin spaces with variable exponents. J. Math. Anal. Appl. 387, 676–690 (2012)

Orlicz, W.: Über eine gewisse Klasse von Räumen vom Typus B. Bull. Int. Acad. Pol. Ser. A 8, 207–220 (1932)

Pick, L., Sickel, W.: Several types of intermediate Besov–Orlicz spaces. Math. Nachr. 164, 141–165 (1993)

Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 146, Marcel Dekker, Inc., New York (1991)

Rao, M.M., Ren, Z.D.: Applications of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics, vol. 250, Marcel Dekker, Inc., New York (2002)

Rychkov, V.S: On a theorem of Bui, Paluszyński, and Taibleson. (Russian) Tr. Mat. Inst. Steklova 227, 286–298 (1999) [translation in Proc. Steklov Inst. Math. 227, 280–292 (1999)]

Sawano, Y.: Wavelet characterization of Besov–Morrey and Triebel–Lizorkin–Morrey spaces. Funct. Approx. Comment. Math. 38, 93–107 (2008)

Sawano, Y., Tanaka, H.: Decompositions of Besov–Morrey spaces and Triebel–Lizorkin–Morrey spaces. Math. Z. 257, 871–905 (2007)

Sawano, Y., Tanaka, H.: Besov–Morrey spaces and Triebel–Lizorkin-Morrey spaces for non-doubling measures. Math. Nachr. 282, 1788–1810 (2009)

Sawano, Y., Yang, D., Yuan, W.: New applications of Besov-type and Triebel–Lizorkin-type spaces. J. Math. Anal. Appl. 363, 73–85 (2010)

Sickel, W., Skrzypczak, L., Vybíral, J.: Complex interpolation of weighted Besov- and Lizorkin–Triebel spaces. Acta Math. Sin. (Engl. Ser.). arXiv:1212.1614 (2012)

Tang, C.: A note on weighted Besov-type and Triebel–Lizorkin-type spaces. J. Funct. Spaces Appl. Article ID 865835 (2013)

Tang, L., Xu, J.: Some properties of Morrey type Besov–Triebel spaces. Math. Nachr. 278, 904–917 (2005)

Triebel, H.: Theory of Function Spaces. Birkhäuser Verlag, Basel (1983)

Triebel, H.: Theory of Function Spaces II. Birkhäuser Verlag, Basel (1992)

Triebel, H.: Interpolation Theory, Function Spaces, Differential Operators, 2nd edn. Johann Ambrosius Barth, Heidelberg (1995)

Triebel, H.: Theory of Function Spaces III. Birkhäuser Verlag, Basel (2006)

Ullrich, T.: Continuous characterization of Besov–Lizorkin–Triebel space and new interpretations as coorbits. J. Funct. Space Appl. Article ID 163213 (2012)

Xu, J.: Variable Besov and Triebel–Lizorkin spaces. Ann. Acad. Sci. Fenn. Math. 33, 511–522 (2008)

Xu, J.: The relation between variable Bessel potential spaces and Triebel–Lizorkin spaces. Integral Transf. Spec. Funct. 19, 599–605 (2008)

Yang, D., Yang, S.: Weighted local Orlicz–Hardy spaces with applications to pseudo-differential operators. Dissertationes Math. (Rozprawy Mat.) 478, 1–78 (2011)

Yang, D., Yang, S.: Local Hardy spaces of Musielak–Orlicz type and their applications. Sci. China Math. 55, 1677–1720 (2012)

Yang, D., Yang, S.: Musielak-Orlicz Hardy spaces associated with operators and their applications. J. Geom. Anal. doi: 10.1007/s12220-012-9344-y . arXiv:1201.5512 (2012)

Yang, D., Yuan, W.: A new class of function spaces connecting Triebel–Lizorkin spaces and $$Q$$ spaces. J. Funct. Anal. 255, 2760–2809 (2008)

Yang, D., Yuan, W.: New Besov-type spaces and Triebel–Lizorkin-type spaces including $$Q$$ spaces. Math. Z. 265, 451–480 (2010)

Yang, D., Yuan, W.: Characterizations of Besov-type and Triebel–Lizorkin-type spaces via maximal functions and local means. Nonlinear Anal. 73, 3805–3820 (2010)

Yang, D., Yuan, W.: Dual properties of Triebel–Lizorkin-type spaces and their applications. Z. Anal. Anwend. 30, 29–58 (2011)

Yang, D., Yuan, W.: Relations among Besov-type spaces, Triebel–Lizorkin-type spaces and generallized Carleson measure spaces. Appl. Anal. 92, 549–561 (2013)

Yang, D., Yuan, W., Zhuo, C.: Fourier multipliers on Triebel-Lizorkin-type spaces. J. Funct. Spaces Appl. Article ID 431016 (2012)

Yang, D., Yuan, W., Zhuo, C.: Complex interpolation on Besov-type and Triebel–Lizorkin-type spaces. Anal. Appl. (to appear)

Yuan, W., Sickel, W., Yang, D.: Morrey and Campanato Meet Besov, Lizorkin and Triebel. Lecture Notes in Mathematics, vol. 2005. Springer, Berlin (2010)