Music classification as a new approach for malware detection

Mehrdad Farrokhmanesh1, Ali Hamzeh1
1Department of Computer Science and Engineering, Shiraz University, Shiraz, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Moir, R.: Defining Malware: FAQ. Microsoft TechNet. https://technet.microsoft.com/en-us/library/dd632948.aspx (2003). Accessed 17 Feb 2017

Symantec.: Internet Security Threat Report, Volume 17. Technical report, Symantec Corporation (2011). http://www.symantec.com/content/en/us/enterprise/other_resources/b-istr_main_report_2011_21239364.en-us.pdf . Accessed 19 May 2018

Vinod, P., Jaipur, R., Laxmi, V., Gaur, M.: Survey on malware detection methods. In: Proceedings of the 3rd Hackers’ Workshop on Computer and Internet Security (IITKHACK’09), pp. 74–79 (2009)

Wong, W.: Analysis and detection of metamorphic computer viruses. Department of Computer Science, San Jose State University, May, Master’s Thesis (2006)

Santos, I., Brezo, F., Ugarte-Pedrero, X., Bringas, P.G.P.: Opcode sequences as representation of executables for data-mining-based unknown malware detection. Inf. Sci. (Ny) 231, 64–82 (2013)

Typke, R., Wiering, F., Veltkamp, R.C.: A survey of music information retrieval systems. In: ISMIR, pp. 153–160 (2005)

Fu, Z., Lu, G., Ting, K.M., Zhang, D.: A survey of audio-based music classification and annotation. IEEE Trans. Multimed. 13(2), 303–319 (2011)

Tiwari, V.: MFCC and its applications in speaker recognition. Int. J. Emerg. Technol. 1(1), 19–22 (2010)

Zhou, Y., Inge, W.M.: Malware detection using adaptive data compression. In: Proceedings of the 1st ACM Workshop on Workshop on AISec, pp. 53–60 (2008)

Khorsand, Z., Hamzeh, A.: A novel compression-based approach for malware detection using PE header. In: 2013 5th Conference on IEEE Information and Knowledge Technology (IKT), pp. 127–133 (2013)

Schultz, M.G., Eskin, E., Zadok, F., Stolfo, S.J.: Data mining methods for detection of new malicious executables. In: Proceedings. 2001 IEEE Symposium on Security and Privacy, 2001. S $$\backslash $$ \ &P 2001, pp. 38–49 (2001)

Kolter, J.Z., Maloof, M.A.: Learning to detect and classify malicious executables in the wild. J. Mach. Learn. Res. 7(Dec), 2721–2744 (2006)

Nataraj, L., Karthikeyan, S., Jacob, G., Manjunath, B. S.: Malware images: visualization and automatic classification. In: Proceedings of the 8th International Symposium on Visualization for Cyber Security, vol. 4 (2011)

Han, K.S., Lim, J.H., Kang, B., Im, E.G.: Malware analysis using visualized images and entropy graphs. Int. J. Inf. Secur. 14(1), 1–14 (2015)

Nataraj, L., Yegneswaran, V., Porras, P., Zhang, J.: A comparative assessment of malware classification using binary texture analysis and dynamic analysis. In: Proceedings of the 4th ACM Workshop on Security and Artificial Intelligence, pp. 21–30 (2011)

Hashemi, H., Azmoodeh, A., Hamzeh, A., Hashemi, S.: Graph embedding as a new approach for unknown malware detection. J. Comput. Virol. Hacking Tech. 13(3), 153–166 (2017)

Yu, X., Zhang, J., Liu, J., Wan, W., Yang, W.: An audio retrieval method based on chromagram and distance metrics. In: 2010 International Conference on. IEEE Audio Language and Image Processing (ICALIP), pp. 425–428 (2010)

Harrington, P.: Machine Learning in Action, no. 3, vol. 37. Manning Publications Co., Greenwich, CT, USA (2012)

FluidSynth 2.0. http://www.fluidsynth.org/ , Accessed 17 Feb 2017

Giannakopoulos, T.: pyAudioAnalysis: an open-source python library for audio signal analysis. PLoS ONE 10(12), 1–17 (2015)

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data mining software: an update. SIGKDD Explor. 11(1), 10–18 (2009)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Vanderplas, J.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12(Oct), 2825–2830 (2011)

Microsoft Malware Classification Challenge (BIG 2015), Kaggle. https://www.kaggle.com/c/malware-classification . Accessed 17 Feb 2017

Powers, D.M.: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. J. Mach. Learn. Technol. 2(1), 37–39 (2011)

Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation and model selection. In: Proceedings of the 1995 International Joint Conference on Artificial Intelligence, vol. 14, no. 2, pp. 1137–1145 (1995)

Dodge, C., Jerse, T.A.: Computer music: synthesis, composition and performance. Macmillan Library Reference, Hampshire (1997)

Bello, J. P.: MIDI Code, NewYork University. https://www.nyu.edu/classes/bello/FMT_files/9_MIDI_code.pdf . Accessed 14 May 2018