Muscle Stem/Progenitor Cells and Mesenchymal Stem Cells of Bone Marrow Origin for Skeletal Muscle Regeneration in Muscular Dystrophies

Archivum Immunologiae et Therapiae Experimentalis - Tập 66 Số 5 - Trang 341-354 - 2018
Aleksandra Klimczak1, Urszula Kozłowska1, Maciej Kurpisz2
1Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
2Institute of Human Genetics Polish Academy of Sciences, Poznan, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alexakis C, Partridge T, Bou-Gharios G (2007) Implication of the satellite cell in dystrophic muscle fibrosis: a self-perpetuating mechanism of collagen overproduction. Am J Physiol Cell Physiol 293:C661–C669

Arnold L, Henry A, Poron F et al (2007) Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 204:1057–1069

Asakura A, Seale P, Girgis-Gabardo A et al (2002) Myogenic specification of side population cells in skeletal muscle. J Cell Biol 159:123–134

Beier JP, Bitto FF, Lange C et al (2011) Myogenic differentiation of mesenchymal stem cells co-cultured with primary myoblasts. Cell Biol Int 35:397–406

Bellayr I, Holden K, Mu X et al (2013) Matrix metalloproteinase inhibition negatively affects muscle stem cell behavior. Int J Clin Exp Pathol 6:124–141

Bhagavati S, Xu W (2004) Isolation and enrichment of skeletal muscle progenitor cells from mouse bone marrow. Biochem Biophys Res Commun 318:119–124

Birbrair A, Zhang T, Wang ZM et al (2013) Role of pericytes in skeletal muscle regeneration and fat accumulation. Stem Cells Dev 22:2298–2314

Birbrair A, Zhang T, Wang ZM et al (2014) Pericytes: multitasking cells in the regeneration of injured, diseased, and aged skeletal muscle. Front Aging Neurosci 6:245

Boldrin L, Zammit PS, Morgan JE (2015) Satellite cells from dystrophic muscle retain regenerative capacity. Stem Cell Res 14:20–29

Boonen KJ, Post MJ (2008) The muscle stem cell niche: regulation of satellite cells during regeneration. Tissue Eng Part B Rev 14:419–431

Boppart MD, De Lisio M, Zou K et al (2013) Defining a role for non-satellite stem cells in the regulation of muscle repair following exercise. Front Physiol 4:310

Bosnakovski D, Xu Z, Li W et al (2008) Prospective isolation of skeletal muscle stem cells with a Pax7 reporter. Stem Cells 26:3194–3204

Cai B, Spencer MJ, Nakamura G et al (2000) Eosinophilia of dystrophin-deficient muscle is promoted by perforin-mediated cytotoxicity by T cell effectors. Am J Pathol 156:1789–1796

Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9:641–650

Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol 213:341–347

Caplan AI (2008) All MSCs are pericytes? Cell Stem Cell 3:229–230

Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9:11–15

Cappellari O, Cossu G (2013) Pericytes in development and pathology of skeletal muscle. Circ Res 113:341–347

Castiglioni A, Corna G, Rigamonti E et al (2015) FOXP3+ T cells recruited to sites of sterile skeletal muscle injury regulate the fate of satellite cells and guide effective tissue regeneration. PLoS One 10:e0128094

Chazaud B, Sonnet C, Lafuste P et al (2003) Satellite cells attract monocytes and use macrophages as a support to escape apoptosis and enhance muscle growth. J Cell Biol 163:1133–1143

Chen L, Tredget EE, Wu PY et al (2008) Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3:e1886

Copland IB, Qayed M, Garcia MA et al (2015) Bone marrow mesenchymal stromal cells from patients with acute and chronic graft-versus-host disease deploy normal phenotype, differentiation plasticity, and immune-suppressive activity. Biol Blood Marrow Transplant 21:934–940

Cossu G, Sampaolesi M (2007) New therapies for Duchenne muscular dystrophy: challenges, prospects and clinical trials. Trends Mol Med 13:520–526

Cossu G, Previtali SC, Napolitano S et al (2015) Intra-arterial transplantation of HLA-matched donor mesoangioblasts in Duchenne muscular dystrophy. EMBO Mol Med 7:1513–1528

Cottle BJ, Lewis FC, Shone V et al (2017) Skeletal muscle-derived interstitial progenitor cells (PICs) display stem cell properties, being clonogenic, self-renewing, and multi-potent in vitro and in vivo. Stem Cell Res Ther 8:158

Crisan M, Yap S, Casteilla L et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3:301–313

Crist C (2017) Emerging new tools to study and treat muscle pathologies: genetics and molecular mechanisms underlying skeletal muscle development, regeneration, and disease. J Pathol 241:264–272

da Silva Meirelles L, Sand TT, Harman RJ et al (2009) MSC frequency correlates with blood vessel density in equine adipose tissue. Tissue Eng Part A 15:221–229

Decary S, Hamida CB, Mouly V et al (2000) Shorter telomeres in dystrophic muscle consistent with extensive regeneration in young children. Neuromuscul Disord 10:113–120

Dellavalle A, Maroli G, Covarello D et al (2011) Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. Nat Commun 2:499

Deng B, Wehling-Henricks M, Villalta SA et al (2012) IL-10 triggers changes in macrophage phenotype that promote muscle growth and regeneration. J Immunol 189:3669–3680

Dumont NA, Wang YX, von Maltzahn J et al (2015) Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 21:1455–1463

English K, Ryan JM, Tobin L et al (2009) Cell contact, prostaglandin E(2) and transforming growth factor beta 1 play non-redundant roles in human mesenchymal stem cell induction of CD4+CD25(high) forkhead box P3+ regulatory T cells. Clin Exp Immunol 156:149–160

Fairclough RJ, Bareja A, Davies KE (2011) Progress in therapy for Duchenne muscular dystrophy. Exp Physiol 96:1101–1113

Faralli H, Dilworth FJ (2014) Dystrophic muscle environment induces changes in cell plasticity. Genes Dev 28:809–811

Farini A, Razini P, Erratico S et al (2009) Cell based therapy for Duchenne muscular dystrophy. J Cell Physiol 221:526–534

Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16:381–390

Friedenstein AJ, Chailakhyan RK, Latsinik NV et al (1974) Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340

Gang EJ, Darabi R, Bosnakovski D et al (2009) Engraftment of mesenchymal stem cells into dystrophin-deficient mice is not accompanied by functional recovery. Exp Cell Res 315:2624–2636

Gavina M, Belicchi M, Rossi B et al (2006) VCAM-1 expression on dystrophic muscle vessels has a critical role in the recruitment of human blood-derived CD133+ stem cells after intra-arterial transplantation. Blood 108:2857–2866

Goldspink G (2005) Mechanical signals, IGF-I gene splicing, and muscle adaptation. Physiology 20:232–238

Harridge SD (2003) Ageing and local growth factors in muscle. Scand J Med Sci Sports 13:34–39

Heredia JE, Mukundan L, Chen FM et al (2013) Type 2 innate signals stimulate fibro/adipogenic progenitors to facilitate muscle regeneration. Cell 153:376–388

Hoffman EP, Fischbeck KH, Brown RH et al (1988) Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne’s or Becker’s muscular dystrophy. N Engl J Med 318:1363–1368

Ichim TE, Alexandrescu DT, Solano F et al (2010) Mesenchymal stem cells as anti-inflammatories: implications for treatment of Duchenne muscular dystrophy. Cell Immunol 260:75–82

Joe AW, Yi L, Natarajan A et al (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 12:153–163

Judson RN, Zhang RH, Rossi FM (2013) Tissue-resident mesenchymal stem/progenitor cells in skeletal muscle: collaborators or saboteurs? FEBS J 280:4100–4108

Jung N, Rupp H, Koczulla AR et al (2017) Myocardial homing of mesenchymal stem cells following intrapericardial application and amplification by inflammation—an experimental pilot study. Can J Physiol Pharmacol 95:1064–1066

Karpati G, Pouliot Y, Carpenter S (1988) Expression of immunoreactive major histocompatibility complex products in human skeletal muscles. Ann Neurol 23:64–72

Karpati G, Ajdukovic D, Arnold D et al (1993) Myoblast transfer in Duchenne muscular dystrophy. Ann Neurol 34:8–17

Klimczak A, Kozlowska U (2016) Mesenchymal stromal cells and tissue-specific progenitor cells: their role in tissue homeostasis. Stem Cells Int 2016:4285215

Klimczak A, Kozlowska U, Jurek T et al (2016) Phenotypical differences of mesenchymal stromal/stem cells isolated from human bone marrow and skeletal muscle. Bone Marrow Transplant Suppl 51(1):128

Kong QF, Sun B, Bai SS et al (2009) Administration of bone marrow stromal cells ameliorates experimental autoimmune myasthenia gravis by altering the balance of Th1/Th2/Th17/Treg cell subsets through the secretion of TGF-beta. J Neuroimmunol 207:83–91

Lagha M, Sato T, Bajard L et al (2008) Regulation of skeletal muscle stem cell behavior by Pax3 and Pax7. Cold Spring Harb Symp Quant Biol 73:307–315

Laumonier T, Bermont F, Hoffmeyer P et al (2017) Human myogenic reserve cells are quiescent stem cells that contribute to muscle regeneration after intramuscular transplantation in immunodeficient mice. Sci Rep 7:3462

Law PK, Goodwin TG, Fang Q et al (1993) Cell transplantation as an experimental treatment for Duchenne muscular dystrophy. Cell Transplant 2:485–505

Le Blanc K, Tammik C, Rosendahl K et al (2003) HLA expression and immunologic properties of differentiated and undifferentiated mesenchymal stem cells. Exp Hematol 31:890–896

Le Blanc K, Rasmusson I, Sundberg B et al (2004) Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 363:1439–1441

Lin Y, Hogan WJ (2011) Clinical application of mesenchymal stem cells in the treatment and prevention of graft-versus-host disease. Adv Hematol 2011:427863

Lin CS, Lue TF (2013) Defining vascular stem cells. Stem Cells Dev 22:1018–1026

Lu A, Poddar M, Tang Y et al (2014) Rapid depletion of muscle progenitor cells in dystrophic mdx/utrophin−/− mice. Hum Mol Genet 23:4786–4800

Madaro L, Bouche M (2014) From innate to adaptive immune response in muscular dystrophies and skeletal muscle regeneration: the role of lymphocytes. Biomed Res Int 2014:438675

Maeda Y, Yonemochi Y, Nakajyo Y et al (2017) CXCL12 and osteopontin from bone marrow-derived mesenchymal stromal cells improve muscle regeneration. Sci Rep 7:3305

Maffioletti SM, Noviello M, English K et al (2014) Stem cell transplantation for muscular dystrophy: the challenge of immune response. Biomed Res Int 2014:964010

Majka SM, Jackson KA, Kienstra KA et al (2003) Distinct progenitor populations in skeletal muscle are bone marrow derived and exhibit different cell fates during vascular regeneration. J Clin Invest 111:71–79

Majumdar MK, Thiede MA, Mosca JD et al (1998) Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176:57–66

Matsumura K, Campbell KP (1993) Deficiency of dystrophin-associated proteins: a common mechanism leading to muscle cell necrosis in severe childhood muscular dystrophies. Neuromuscul Disord 3:109–118

Matthias N, Hunt SD, Wu J et al (2015) Skeletal muscle perfusion and stem cell delivery in muscle disorders using intra-femoral artery canulation in mice. Exp Cell Res 339:103–111

Meirelles Lda S, Nardi NB (2009) Methodology, biology and clinical applications of mesenchymal stem cells. Front Biosci 14:4281–4298

Mendell JR, Kissel JT, Amato AA et al (1995) Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med 333:832–838

Meng J, Muntoni F, Morgan JE (2011) Stem cells to treat muscular dystrophies—where are we? Neuromuscul Disord 21:4–12

Meng J, Counsell JR, Reza M et al (2016) Autologous skeletal muscle derived cells expressing a novel functional dystrophin provide a potential therapy for Duchenne muscular dystrophy. Sci Rep 6:19750

Miller RG, Sharma KR, Pavlath GK et al (1997) Myoblast implantation in Duchenne muscular dystrophy: the San Francisco study. Muscle Nerve 20:469–478

Mitchell KJ, Pannerec A, Cadot B et al (2010) Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nat Cell Biol 12:257–266

Miyagawa I, Nakayamada S, Nakano K et al (2017) Induction of regulatory T cells and its regulation with insulin-like growth factor/insulin-like growth factor binding protein-4 by human mesenchymal stem cells. J Immunol 199:1616–1625

Mokarram N, Merchant A, Mukhatyar V et al (2012) Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 33:8793–8801

Mouly V, Aamiri A, Perie S et al (2005) Myoblast transfer therapy: is there any light at the end of the tunnel? Acta Myol 24:128–133

Mozzetta C, Consalvi S, Saccone V et al (2013) Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old Mdx mice. EMBO Mol Med 5:626–639

Murphy MB, Moncivais K, Caplan AI (2013) Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med 45:e54

Nauta AJ, Kruisselbrink AB, Lurvink E et al (2006) Mesenchymal stem cells inhibit generation and function of both CD34+-derived and monocyte-derived dendritic cells. J Immunol 177:2080–2087

Olson LE, Soriano P (2009) Increased PDGFRalpha activation disrupts connective tissue development and drives systemic fibrosis. Dev Cell 16:303–313

Pannerec A, Formicola L, Besson V et al (2013) Defining skeletal muscle resident progenitors and their cell fate potentials. Development 140:2879–2891

Patsalos A, Pap A, Varga T et al (2017) In situ macrophage phenotypic transition is affected by altered cellular composition prior to acute sterile muscle injury. J Physiol 595:5815–5842

Peault B, Rudnicki M, Torrente Y et al (2007) Stem and progenitor cells in skeletal muscle development, maintenance, and therapy. Mol Ther 15:867–877

Perez AL, Bachrach E, Illigens BM et al (2009) CXCR4 enhances engraftment of muscle progenitor cells. Muscle Nerve 40:562–572

Pini V, Morgan JE, Muntoni F et al (2017) Genome editing and muscle stem cells as a therapeutic tool for muscular dystrophies. Curr Stem Cell Rep 3:137–148

Pisconti A, Banks GB, Babaeijandaghi F et al (2016) Loss of niche-satellite cell interactions in syndecan-3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration. Skelet Muscle 6:34

Price FD, Kuroda K, Rudnicki MA (2007) Stem cell based therapies to treat muscular dystrophy. Biochim Biophys Acta 1772:272–283

Qiao C, Li J, Zhu T et al (2005) Amelioration of laminin-alpha2-deficient congenital muscular dystrophy by somatic gene transfer of miniagrin. Proc Natl Acad Sci USA 102:11999–12004

Ramasamy R, Fazekasova H, Lam EW et al (2007) Mesenchymal stem cells inhibit dendritic cell differentiation and function by preventing entry into the cell cycle. Transplantation 83:71–76

Rasini V, Dominici M, Kluba T et al (2013) Mesenchymal stromal/stem cells markers in the human bone marrow. Cytotherapy 15:292–306

Ratajczak MZ, Majka M, Kucia M et al (2003) Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. Stem Cells 21:363–371

Rigamonti E, Zordan P, Sciorati C et al (2014) Macrophage plasticity in skeletal muscle repair. Biomed Res Int 2014:560629

Saccone V, Consalvi S, Giordani L et al (2014) HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes Dev 28:841–857

Saclier M, Yacoub-Youssef H, Mackey AL et al (2013) Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration. Stem Cells 31:384–396

Serena E, Zatti S, Zoso A et al (2016) Skeletal muscle differentiation on a chip shows human donor mesoangioblasts’ efficiency in restoring dystrophin in a duchenne muscular dystrophy model. Stem Cells Transl Med 5:1676–1683

Serrano AL, Mann CJ, Vidal B et al (2011) Cellular and molecular mechanisms regulating fibrosis in skeletal muscle repair and disease. Curr Top Dev Biol 96:167–201

Sherwood RI, Christensen JL, Conboy IM et al (2004) Isolation of adult mouse myogenic progenitors: functional heterogeneity of cells within and engrafting skeletal muscle. Cell 119:543–554

Siegel G, Schafer R, Dazzi F (2009) The immunosuppressive properties of mesenchymal stem cells. Transplantation 87(9 Suppl):S45–S49

Skuk D, Tremblay JP (2000) Progress in myoblast transplantation: a potential treatment of dystrophies. Microsc Res Tech 48:213–222

Skuk D, Roy B, Goulet M et al (2004) Dystrophin expression in myofibers of Duchenne muscular dystrophy patients following intramuscular injections of normal myogenic cells. Mol Ther 9:475–482

Skuk D, Goulet M, Roy B et al (2006) Dystrophin expression in muscles of duchenne muscular dystrophy patients after high-density injections of normal myogenic cells. J Neuropathol Exp Neurol 65:371–386

Skuk D, Goulet M, Roy B et al (2007) First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord 17:38–46

Spencer MJ, Montecino-Rodriguez E, Dorshkind K et al (2001) Helper (CD4(+)) and cytotoxic (CD8(+)) T cells promote the pathology of dystrophin-deficient muscle. Clin Immunol 98:235–243

Srikuea R, Pholpramool C, Kitiyanant Y et al (2010) Satellite cell activity in muscle regeneration after contusion in rats. Clin Exp Pharmacol Physiol 37:1078–1086

Tamaki T, Uchiyama Y, Hirata M et al (2015) Therapeutic isolation and expansion of human skeletal muscle-derived stem cells for the use of muscle-nerve-blood vessel reconstitution. Front Physiol 6:165

Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298:R1173–R1187

Tonkin J, Temmerman L, Sampson RD et al (2015) Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization. Mol Ther 23:1189–1200

Traktuev DO, Merfeld-Clauss S, Li J et al (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102:77–85

Uezumi A, Ito T, Morikawa D et al (2011) Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci 124(Pt 21):3654–3664

van den Akker F, de Jager SC, Sluijter JP (2013) Mesenchymal stem cell therapy for cardiac inflammation: immunomodulatory properties and the influence of Toll-like receptors. Mediat Inflamm 2013:181020

Varga T, Mounier R, Patsalos A et al (2016) Macrophage PPARgamma, a lipid activated transcription factor controls the growth factor GDF3 and skeletal muscle regeneration. Immunity 45:1038–1051

Villalta SA, Nguyen HX, Deng B et al (2009) Shifts in macrophage phenotypes and macrophage competition for arginine metabolism affect the severity of muscle pathology in muscular dystrophy. Hum Mol Genet 18:482–496

Wang H, Melton DW, Porter L et al (2014) Altered macrophage phenotype transition impairs skeletal muscle regeneration. Am J Pathol 184:1167–1184

Watt SM, Gullo F, van der Garde M et al (2013) The angiogenic properties of mesenchymal stem/stromal cells and their therapeutic potential. Br Med Bull 108:25–53

Wehling-Henricks M, Sokolow S, Lee JJ et al (2008) Major basic protein-1 promotes fibrosis of dystrophic muscle and attenuates the cellular immune response in muscular dystrophy. Hum Mol Genet 17:2280–2292

Wiendl H, Lautwein A, Mitsdorffer M et al (2003) Antigen processing and presentation in human muscle: cathepsin S is critical for MHC class II expression and upregulated in inflammatory myopathies. J Neuroimmunol 138:132–143

Witt R, Weigand A, Boos AM et al (2017) Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering. BMC Cell Biol 18:15

Yin H, Price F, Rudnicki MA (2013) Satellite cells and the muscle stem cell niche. Physiol Rev 93:23–67

Zou Y, Zhang RZ, Sabatelli P et al (2008) Muscle interstitial fibroblasts are the main source of collagen VI synthesis in skeletal muscle: implications for congenital muscular dystrophy types Ullrich and Bethlem. J Neuropathol Exp Neurol 67:144–154