Multivariate paired data analysis: multilevel PLSDA versus OPLSDA

Metabolomics - Tập 6 Số 1 - Trang 119-128 - 2010
Johan A. Westerhuis1, Ewoud J. J. van Velzen1, Huub C. J. Hoefsloot1, Age K. Smilde1
1Biosystems Data Analysis, Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Amsterdam, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Barker, M., & Rayens, W. (2003). Partial least squares for discrimination. Journal of Chemometrics, 17(3), 166–173.

Bertram, H. C., Knudsen, K. E. B., Serena, A., et al. (2006). NMR-based metabonomic studies reveal changes in the biochemical profile of plasma and urine from pigs fed high-fibre rye bread. British Journal of Nutrition, 95(5), 955–962.

Bylesjo, M., Rantalainen, M., Cloarec, O., et al. (2006). OPLS discriminant analysis: Combining the strengths of PLS-DA and SIMCA classification. Journal of Chemometrics, 20(8–10), 341–351.

Indahl, U. G., Martens, H., & Naes, T. (2007). From dummy regression to prior probabilities in PLS-DA. Journal of Chemometrics, 21(12), 529–536.

Jansen, J. J., Hoefsloot, H. C. J., van der Greef, J., Timmerman, M. E., & Smilde, A. K. (2005). Multilevel component analysis of time-resolved metabolic fingerprinting data. Analytica Chimica Acta, 530(2), 173–183.

Lindgren, F., Hansen, B., Karcher, W., Sjostrom, M., & Eriksson, L. (1996). Model validation by permutation tests: Applications to variable selection. Journal of Chemometrics, 10(5–6), 521–532.

Nocairi, H., Qannari, E. M., Vigneau, E., & Bertrand, D. (2005). Discrimination on latent components with respect to patterns. Application to multicollinear data. Computational Statistics and Data Analysis, 48(1), 139–147.

Pohjanen, E., Thysell, E., Jonsson, P., et al. (2007). A multivariate screening strategy for investigating metabolic effects of strenuous physical exercise in human serum. Journal of Proteome Research, 6(6), 2113–2120.

Rantalainen, M., Cloarec, O., Ebbels, T. M. D., et al. (2008). Piecewise multivariate modelling of sequential metabolic profiling data. BMC Bioinformatics, 9, article no. 105.

Rezzi, S., Ramadan, Z., Fay, L. B., & Kochhar, S. (2007). Nutritional metabonomics: Applications and perspectives. Journal of Proteome Research, 6(2), 513–525.

Skov, T., & Bro, R. (2008). Solving fundamental problems in chromatographic analysis. Analytical and Bioanalytical Chemistry, 390(1), 281–285.

Smit, S., van Breemen, M. J., Hoefsloot, H. C. J., et al. (2007). Assessing the statistical validity of proteomics based biomarkers. Analytica Chimica Acta, 592(2), 210–217.

Sokal, R. R., & Rohlf, F. J. (1998). Biometry. New York: W.H. Freeman and Company.

Trygg, J., & Wold, S. (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16(3), 119–128.

van Velzen, E. J. J., Westerhuis, J. A., van Duynhoven, J. P. M., et al. (2008). Multilevel data analysis of a crossover designed human nutritional intervention study. Journal of Proteome Research, 7(10), 4483–4491.

van Velzen, E. J. J., Westerhuis, J. A., van Duynhoven, J. P. M., et al. (2009). Phenotyping tea consumers by nutrikinetic analysis of polyphenolic end-metabolites. Journal of Proteome Research, 8(7), 3317–3330.

Westerhuis, J. A., Hoefsloot, H. C. J., Smit, S., et al. (2008a). Assessment of PLSDA cross validation. Metabolomics, 4(1), 81–89.

Westerhuis, J. A., van Velzen, E. J. J., Hoefsloot, H. C. J., & Smilde, A. K. (2008b). Discriminant Q(2) (DQ(2)) for improved discrimination in PLSDA models. Metabolomics, 4(4), 293–296.

Wiklund, S., Johansson, E., Sjostrom, L., et al. (2008). Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Analytical Chemistry, 80(1), 115–122.

Wu, W., Daszykowski, M., Walczak, B., et al. (2006). Peak alignment of urine NMR spectra using fuzzy warping. Journal of Chemical Information and Modeling, 46(2), 863–875.