Multivariate Interpolation Using Carlitz's Inversion Formulas

Tian Xiao He1
1Department of Mathematics and Computer Science, Illinois Wesleyan University, Bloomington

Tóm tắt

Multivariate rational exponential Lagrange interpolation formulas, Hermite interpolation formulas, and Hermite–Fejér interpolation formulas of the Newton type are established by using Carlitz's inversion formulas. The recurrence relation for constructing Lagrange interpolation is also given. In addition, by setting q→1 in the obtained formulas, we obtain the corresponding polynomial interpolation formulas with combinatorial form.

Tài liệu tham khảo

W. N. Bailey, Generalized Hypergeometric Series, Cambridge Univ. Press, Cambridge, 1935. C. de Boor and A. Ron, On multivariate polynomial interpolation, Constr. Approx. 6, 287–302 (1990). C. de Boor and A. Ron, The least solution for the polynomial interpolation problem, Math. Z. 210, 347–378 (1992). C. de Boor and A. Ron, Computational aspects of polynomial interpolation in several variables, Math. Comp. 58, 705–727 (1992). L. Carlitz, Some inverserelations, Duke Math. J. 40, 893–901 (1973). W. C. Chu, Inversion techniques and combinatorial identities: basic hypergeometric identities, Publ. Math. Debrecen. 44 (3–4), 301–320 (1994). C. K. Chui, T. X. He, and R. H. Wang, Interpolation by bivariate linear splines, Colloquia Mathematica, (J. Szbadas, ed.), North-Holland Publ., 1986, pp. 247–255. C. K. Chui and T. X. He, On the location of sample points for interpolation by bivariate C 1quadratic splines, Numerical Approximation Theory, (L. Collatz et al., eds.) Birkhauser, Basel, 1987, pp. 30–43. K. C. Chung and T. H. Yao, On lattices admitting unique Langrange interpolations, SIAM J. Numer. Anal. 14, 735–741 (1977). G. Gasper, Summation, transformationand expansion formulas for bibasic series, Trans. Amer. Math. Soc. 312, 257–277 (1989). G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge Univ. Press, Cambridge, 1990. I. Gessel and D. Stanton, Strange evaluations of hypergeometric series, SIAM J. Math. Anal. 13, 295–308 (1982). H. W. Gould and L. C. Hsu, Some new inverse series relations, Duke Math. J. 40, 885–891 (1973). T. X. He, Admissible location of sample points of interpolation by bivariate C1 quadratic splines, Proceedings of the First International Conference on Approximation, Probability, and Related Fields, (G. Anastassiou and S. T. Rachev, eds.) Plenum Publisher, 1994, pp. 283–296. L. C. Hsu and T. X. He, On a kind of multivariate rational interpolation, Numerical Mathematics, A Journal of Chinese Universities. 2, 144–152 (1986). L. C. Hsu and J. X. Yang, A classof multivariate rational interpolation formulas, J. Comp. Math. (Beijing), 2, 164–169 (1984). X. Z. Liang, Lagrange representation of multivariate interpolation, Science in China (Ser. A) 4, 385–396 (1989). X. Z. Liang and C. M. Lu, Proper posed set of nodes for bivariate Lagrange interpolation, Approximation Theory IX, Vol. 2, (C. K. Chui and L. L. Schumaker, eds.) Vanderbilt University Press, 1998, pp. 189–196. G. Nurnberger and Th. Riessinger, Bivariate spline interpolation at grid points, Numer. Math. 71, 91–119 (1995). T. Sauer, Algebraic aspectsof polynomial interpolation in several variables, Approximation Theory IX, Vol. 1, (C. K. Chui and L. L. Schumaker, eds.) Vanderbilt University Press, 1998, pp. 289–296. L. J. Slater, Generalized Hypergeometric Functions, Cambridge Univ. Press, Cambridge, 1966. Y. S. Zhou, T. X. He, and Y. T. Chang, Multivariate interpolation methods I, J. Engin. Math., 4, 12–16 (1984).