Thuật toán ước lượng tham số đa giai đoạn cho nhận dạng các hệ thống phi tuyến bậc hai

Springer Science and Business Media LLC - Tập 110 - Trang 2635-2655 - 2022
Fatemeh Shahriari1, Mohammad Mehdi Arefi1, Hao Luo2, Shen Yin3
1Department of Power and Control Engineering, School of Electrical and Computer Engineering, Shiraz University, Shiraz, Iran
2Department of Control Science and Engineering, School of Astronautics, Harbin Institute of Technology, Harbin, China
3Department of Mechanical and Industrial Engineering, Faculty of Engineering, Norwegian University of Science and Technology, Trondheim, Norway

Tóm tắt

Trong bài báo này, hai phương pháp ước lượng tham số cho các hệ thống không gian trạng thái phi tuyến hình chữ nhật với tiếng ồn có màu, được biểu thị bằng mô hình ARMA, được đề xuất. Sử dụng nguyên lý nhận dạng phân cấp và phương pháp gradient, nhằm giảm chi phí tính toán, cả hai thuật toán hồi quy bình phương nhỏ nhất bốn giai đoạn và thuật toán gradient ngẫu nhiên bốn giai đoạn đều được khai thác, qua đó giảm sai số ước lượng tham số và tăng tốc độ hội tụ của các tham số. Ngoài ra, một bộ quan sát trạng thái phi tuyến cho việc ước lượng trạng thái được thiết kế để tận dụng các trạng thái ước lượng trong thuật toán hồi quy bình phương nhỏ nhất bốn giai đoạn và thuật toán gradient ngẫu nhiên bốn giai đoạn. Cuối cùng, một ví dụ số và một ví dụ thực tiễn được cung cấp để chỉ ra sự vượt trội của các phương pháp được đề xuất. Các kết quả cho thấy với sự gia tăng chiều dài dữ liệu, sai số ước lượng các tham số được giảm thiểu. Hơn nữa, các tham số ước lượng hội tụ về các giá trị thực trong một khoảng thời gian ngắn.

Từ khóa

#phương pháp ước lượng tham số #hệ thống phi tuyến bậc hai #tiếng ồn có màu #mô hình ARMA #thuật toán hồi quy bình phương nhỏ nhất #thuật toán gradient ngẫu nhiên

Tài liệu tham khảo

Ding, F., Wang, F., Xu, L., Wu, M.: Decomposition based least squares iterative identification algorithm for multivariate pseudo-linear ARMA systems using the data filtering. J. Frankl. Inst. 354(3), 1321–1339 (2017) Ding, F., Xu, L., Zhu, Q.: Performance analysis of the generalised projection identification for time-varying systems. IET Control Theory Appl. 10(18), 2506–2514 (2016) Wang, D.: Hierarchical parameter estimation for a class of MIMO Hammerstein systems based on the reframed models. Appl. Math. Lett. 57, 13–19 (2016) Kazemi, M., Arefi, M.M., Alipouri, Y.: Wiener model based GMVC design considering sensor noise and delay. ISA Trans. 88, 73–81 (2019) Wang, D., Zhang, W.: Improved least squares identification algorithm for multivariable Hammerstein systems. J. Frankl. Inst. 352(11), 5292–5307 (2015) Zhang, C., Li, J.: Adaptive iterative learning control for nonlinear pure-feedback systems with initial state error based on fuzzy approximation. J. Frankl. Inst. 351(3), 1483–1500 (2014) Zhang, H., Luo, Y., Liu, D.: Neural-network-based near-optimal control for a class of discrete-time affine nonlinear systems with control constraints. IEEE Trans. Neural Netw. 20(9), 1490–1503 (2009) Xu, L.: A proportional differential control method for a time-delay system using the Taylor expansion approximation. Appl. Math. Comput. 236, 391–399 (2014) Xu, L.: The parameter estimation algorithms based on the dynamical response measurement data. Adv. Mech. Eng. 9(11), 1687814017730003 (2017) Beauduin, T., Fujimoto, H.: Identification of system dynamics with time delay: a two-stage frequency domain approach. IFAC-PapersOnLine 50(1), 10870–10875 (2017) Bianchi, F., Prandini, M., Piroddi, L.: A randomized two-stage iterative method for switched nonlinear systems identification. Nonlinear Anal. Hybrid Syst. 35, 100818 (2020) Liu, Q., Ding, F.: Auxiliary model-based recursive generalized least squares algorithm for multivariate output-error autoregressive systems using the data filtering. Circuits Syst. Signal Process. 38(2), 590–610 (2019) Yin, S., Gao, H., Kaynak, O.: Data-driven control and process monitoring for industrial applications—part I. IEEE Trans. Ind. Electron. 61(11), 6356–6359 (2014) Yin, S., Gao, H., Qiu, J., Kaynak, O.: Fault detection for nonlinear process with deterministic disturbances: a just-in-time learning based data driven method. IEEE Trans. Cybern. 47(11), 3649–3657 (2016) Zhang, X., Ding, F., Xu, L., Yang, E.: State filtering-based least squares parameter estimation for bilinear systems using the hierarchical identification principle. IET Control Theory Appl. 12(12), 1704–1713 (2018) Bruni, C., Dipillo, G., Koch, G.: Bilinear systems: an appealing class of" nearly linear" systems in theory and applications. IEEE Trans. Autom. Control 19(4), 334–348 (1974) Hafezi, Z., Arefi, M.M.: Recursive generalized extended least squares and RML algorithms for identification of bilinear systems with ARMA noise. ISA Trans. 88, 50–61 (2019) Hwang, C., Chen, M.-Y.: Parameter identification of bilinear systems using the Galerkin method. Int. J. Syst. Sci. 16(5), 641–648 (1985) Balatif, O., Abdelbaki, I., Rachik, M., Rachik, Z.: Optimal control for multi-input bilinear systems with an application in cancer chemotherapy. Int. J. Sci. Innov. Math. Res. (IJSIMR) 3(2), 22–31 (2015) Arguello-Serrano, B., Velez-Reyes, M.: Nonlinear control of a heating, ventilating, and air conditioning system with thermal load estimation. IEEE Trans. Control Syst. Technol. 7(1), 56–63 (1999) Tsai, S.-H., Hsiao, M.-Y., Tsai, K.-L.: LMI-based fuzzy control for a class of time-delay discrete fuzzy bilinear system. In IEEE International Conference on Fuzzy Systems, pp. 796–801 (2009) Figalli, G., Cava, M.L., Tomasi, L.: An optimal feedback control for a bilinear model of induction motor drives. Int. J. Control 39(5), 1007–1016 (1984) Mohler, R.R.: Nonlinear Systems (vol. 2) Applications to Bilinear Control. Prentice-Hall, Inc., Englewood Cliffs (1991) Dai, H., Sinha, N.: Robust recursive least-squares method with modified weights for bilinear system identification. IEE Proce. Control Theory Appl. 136(3), 122–126 (1989) Li, M., Liu, X., Ding, F.: The maximum likelihood least squares based iterative estimation algorithm for bilinear systems with autoregressive moving average noise. J. Frankl. Inst. 354(12), 4861–4881 (2017) Li, M., Liu, X., Ding, F.: The gradient-based iterative estimation algorithms for bilinear systems with autoregressive noise. Circuits Syst. Signal Process. 36(11), 4541–4568 (2017) Li, M., Liu, X., Ding, F.: Least-squares-based iterative and gradient-based iterative estimation algorithms for bilinear systems. Nonlinear Dyn. 89(1), 197–211 (2017) Gibson, S., Wills, A., Ninness, B.: Maximum-likelihood parameter estimation of bilinear systems. IEEE Trans. Autom. Control 50(10), 1581–1596 (2005) Xu, L., Ding, F.: Iterative parameter estimation for signal models based on measured data. Circuits Syst. Signal Process. 37(7), 3046–3069 (2018) Ding, F., Liu, P.X., Liu, G.: Gradient based and least-squares based iterative identification methods for OE and OEMA systems. Digital Signal Process. 20(3), 664–677 (2010) Xu, H., Ding, F., Yang, E.: Modeling a nonlinear process using the exponential autoregressive time series model. Nonlinear Dyn. 95(3), 2079–2092 (2019) Kazemi, M., Arefi, M.M.: A fast iterative recursive least squares algorithm for Wiener model identification of highly nonlinear systems. ISA Trans. 67, 382–388 (2017) Xu, L., Ding, F., Gu, Y., Alsaedi, A., Hayat, T.: A multi-innovation state and parameter estimation algorithm for a state space system with d-step state-delay. Signal Process. 140, 97–103 (2017) Fnaiech, F., Ljung, L.: Recursive identification of bilinear systems. Int. J. Control 45(2), 453–470 (1987) Phan, M.Q., Vicario, F., Longman, R.W., Betti, R.: Optimal bilinear observers for bilinear state-space models by interaction matrices. Int. J. Control 88(8), 1504–1522 (2015) Phan, M.Q., Čelik, H.: A superspace method for discrete-time bilinear model identification by interaction matrices. J. Astronaut. Sci. 59(1), 421–440 (2012) Gabr, M.: A recursive (on-line) identification of bilinear systems. Int. J. Control 44(4), 911–917 (1986) Hizir, N.B., Phan, M.Q., Betti, R., Longman, R.W.: Identification of discrete-time bilinear systems through equivalent linear models. Nonlinear Dyn. 69(4), 2065–2078 (2012) Meng, D.: Recursive least squares and multi-innovation gradient estimation algorithms for bilinear stochastic systems. Circuits Syst. Signal Process. 36(3), 1052–1065 (2017) Liu, S., Ding, F., Xu, L., Hayat, T.: Hierarchical principle-based iterative parameter estimation algorithm for dual-frequency signals. Circuits Syst. Signal Process. 38(7), 3251–3268 (2019) Cui, T., Ding, F., Jin, X.-B., Alsaedi, A., Hayat, T.: Joint multi-innovation recursive extended least squares parameter and state estimation for a class of state-space systems. Int. J. Control Autom. Syst. 1–13 (2019) Tsai, S.-H., Li, T.-H.S.: Robust fuzzy control of a class of fuzzy bilinear systems with time-delay. Chaos, Solitons Fractals 39(5), 2028–2040 (2009) Lu, X., Ding, F., Alsaedi, A., Hayat, T.: Decomposition-based gradient estimation algorithms for multivariable equation-error systems. Int. J. Control Autom. Syst. 17(8), 2037–2045 (2019) Li, M., Liu, X.: The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique. Signal Process. 147, 23–34 (2018) Ding, F., Xu, L., Meng, D., Jin, X.-B., Alsaedi, A., Hayat, T.: Gradient estimation algorithms for the parameter identification of bilinear systems using the auxiliary model. J. Comput. Appl. Math. 112575 (2019) Luo, H., Li, K., Huo, M., Yin, S., Kaynak, O.: A data-driven process monitoring approach with disturbance decoupling. In: Data Driven Control and Learning Systems Conference, pp. 569–574 (2018) Zhang, X., Ding, F., Xu, L.: Recursive parameter estimation methods and convergence analysis for a special class of nonlinear systems. Int. J. Robust Nonlinear Control 30(4), 1373–1393 (2020) Zhang, X., Xu, L., Ding, F., Hayat, T.: Combined state and parameter estimation for a bilinear state space system with moving average noise. J. Frankl. Inst. 355(6), 3079–3103 (2018) Chen, H., Ding, F.: Hierarchical least squares identification for Hammerstein nonlinear controlled autoregressive systems. Circuits Syst. Signal Process. 34(1), 61–75 (2015) Zhang, X., Ding, F.: Recursive parameter estimation and its convergence for bilinear systems. IET Control Theory Appl. 14(5), 677–688 (2019) Ding, F., Chen, H., Xu, L., Dai, J., Li, Q., Hayat, T.: A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation. J. Franklin Inst. 355(8), 3737–3752 (2018)