Multispectral imaging of mineral samples by infrared quantum dot focal plane array sensors

Measurement - Tập 159 - Trang 107775 - 2020
Chenhui Huang1, Tomo Tanaka2,3, Sota Kagami2,3, Yoshiki Ninomiya4, Masahiro Kakuda3, Katsuyuki Watanabe5, Sei Inoue6, Kenji Nanba6, Yuichi Igarashi2,3, Tsuyoshi Yamamoto2,3, Akinobu Shibuya2,3, Kentaro Nakahara1, Yasuhiko Arakawa3,5, Shin-ichi Yorozu3,7
1Data Science Research Labs of NEC Corp., Miyukigaoka 34, Tsukuba, Ibaraki 305-8501, Japan
2System Platform Research Labs of NEC Corp., Miyukigaoka 34, Tsukuba, Ibaraki 305-8501, Japan
3Institute for Nano Quantum Information Electronics, The Univ. of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505, Japan
4National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
5Institute of Industrial Science, The Univ. of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, JAPAN
6Supply Chain Management Division of NEC Corp., Shimonumabe 1753, Nakahara-ku, Kawasaki, Kanagawa 211-8666, Japan
7RIKEN Center for Emergent Matter Science, Hirozawa 2-1, Wako, Saitama 351-0198, Japan

Tài liệu tham khảo

Baldridge, 2009, The ASTER spectral library version 2.0, Remote Sens. Environ., 113, 711, 10.1016/j.rse.2008.11.007 Ninomiya, 2019, Thermal infrared multispectral remote sensing of lithology and mineralogy based on spectral properties of materials, Ore Geol. Rev., 108, 54, 10.1016/j.oregeorev.2018.03.012 Ninomiya, 1997, A comparison of thermal infrared emissivity spectra measured in situ, in the laboratory, and derived from thermal infrared multispectral scanner (TIMS) data in Cuprite, Nevada, U.S.A, Int. J. Remote Sensing, 18, 1571, 10.1080/014311697218287 Adão, 2017, Hyperspectral imaging: a Review on UAV-based sensors, data processing and applications for agriculture and forestry, Remote Sens., 9, 1110, 10.3390/rs9111110 Della Ventura, 2010, Application of micro-FTIR imaging in the Earth sciences, Anal. Bioanal. Chem., 397, 2039, 10.1007/s00216-010-3811-8 Wysoczanski, 2006, Spectroscopic FTIR imaging of water species in silicic volcanic glasses and melt inclusions: an example from the Izu-Bonin arc, J. Volcanol Geotherm. Res., 156, 302, 10.1016/j.jvolgeores.2006.03.024 Agassi, 2016, Detection of gaseous plumes in airborne hyperspectral imagery, Proc. SPIE, 9824, 98240U, 10.1117/12.2222142 Basedow, 1995, HYDICE system: implementation and performance, Proc. SPIE, 2480, 258, 10.1117/12.210881 Sakoğlu, 2006, Statistical adaptive sensing by detectors with spectrally overlapping bands, Appl. Opt., 45, 7224, 10.1364/AO.45.007224 Krishna, 2007, Quantum dot based infrared focal plane array, Proc. IEEE, 95, 1838, 10.1109/JPROC.2007.900969 Rogalski, 2009, Third-generation infrared photodetector arrays, J. Appl. Phys., 105, 10.1063/1.3099572 Huang, 2017, Analysis of mineral composition by infrared spectral imaging using quantum dot focal plane array sensor, Proc. SPIE, 10231, 102310N, 10.1117/12.2262048 Krishna, 2005, Quantum dots-in-a-well infrared photodetectors, J. Phys. D: Appl. Phys., 38, 2142, 10.1088/0022-3727/38/13/010 Gunapala, 2007, 640x512 Pixels Long-Wavelength Infrared (LWIR) Quantum-Dot Infrared Photodetector (QDIP) imaging focal plane array, IEEE J. Quantum. Elect., 43, 230, 10.1109/JQE.2006.889645 Barve, 2011, Confinement enhancing barriers for high performance quantum dots-in-a-well infrared detectors, Appl. Phys. Lett., 99, 10.1063/1.3660317 Polojärvi, 2012, Removal of strain relaxation induced defects by flushing of InAs quantum dots, J. Phys. D: Appl. Phys., 45, 10.1088/0022-3727/45/36/365107 Jones, 1960, Proposal of the detectivity D** for detectors limited by radiation noise, J. Opt. Soc. Am., 50, 1058, 10.1364/JOSA.50.001058 Orżanowski, 2016, Nonuniformity correction algorithm with efficient pixel offset estimation for infrared focal plane arrays, Springerplus, 5, 1831, 10.1186/s40064-016-3534-1 Girón, 2010, A new algorithm for detecting and correcting bad pixels in infrared images, Ing. Investig., 30, 197, 10.15446/ing.investig.v30n2.15750 Hacker, 1993, High-pressure deformation of calcite marble and its transformation to aragonite under non-hydrostatic conditions, J. Struct. Geol., 15, 1207, 10.1016/0191-8141(93)90164-6 Adler, 1962, Infrared study of aragonite and calcite, Am. Mineral., 47, 700 Ku, 1966, Notes on the use of propagation of error formulas, J. Res. Natl. Bur. Stand., 70C, 263 R. P. Gupta, Remote sensing geology, Springer; 2017, pp. 267–352. Del Pozo, 2015, Discrimination between sedimentary rocks from close-range visible and very-near-infrared images, PloS one, 10, e0132471, 10.1371/journal.pone.0132471 Madani, 2012, Spectroscopy of the mineralized tonalite–diorite intrusions, Bulghah gold mine area, Saudi Arabia: effects of opaques and alteration products on FieldSpec data, Ore Geol. Rev., 44, 148, 10.1016/j.oregeorev.2011.09.013 Lagueux, 2009, Airborne Measurements in the Infrared Using FTIR-Based Imaging Hyperspectral Sensors, Proc. First Workshop Hyperspectral Image Signal Process.: Evol. Remote Sens., 482–485