Multisensor video fusion based on higher order singular value decomposition
Tài liệu tham khảo
Hu, 2004, A survey on visual surveillance of object motion and behaviors, IEEE Trans. Syst. Man Cybern. – Part C: Appl. Rev., 34, 334, 10.1109/TSMCC.2004.829274
Denman, 2010, Multi-spectral fusion for surveillance systems, Comput. Electric. Eng., 36, 643, 10.1016/j.compeleceng.2008.11.011
Snidaro, 2012, Fusing multiple video sensors for surveillance, ACM Trans. Multimedia Comput. Commun. Appl., 8, 7:1, 10.1145/2071396.2071403
Shi, 2014, Change detection in synthetic aperture radar images based on fuzzy active contour models and genetic algorithms, Math. Prob. Eng., 2014, 870936:1, 10.1155/2014/870936
Snidaro, 2007, Quality-based fusion of multiple video sensor for video surveillance, IEEE Trans. Syst. Man Cybern. – Part B: Cybern., 37, 1044, 10.1109/TSMCB.2007.895331
Lewis, 2007, Pixel- and region-based image fusion with complex wavelets, Inform. Fus., 8, 119, 10.1016/j.inffus.2005.09.006
Li, 2011, Performance comparison of different multi-resolution transforms for image fusion, Inform. Fus., 12, 74, 10.1016/j.inffus.2010.03.002
Zhang, 2013, Multimodality image fusion by using both phase and magnitude information, Pattern Recogn. Lett., 34, 185, 10.1016/j.patrec.2012.09.020
O. Rockinger, Image sequence fusion using a shift-invariant wavelet transform, in: Proceedings of the International Conference on Image Processing, 1997, pp. 288–291.
Bennett, 2007, Multispectral bilateral video fusion, IEEE Trans. Image Process., 16, 1185, 10.1109/TIP.2007.894236
Zhang, 2012, A novel video fusion framework using surfacelet transform, Opt. Commun., 285, 3032, 10.1016/j.optcom.2012.02.064
Zhang, 2013, Multisensor video fusion based on spatial–temporal salience detection, Signal Process., 93, 2483, 10.1016/j.sigpro.2013.03.018
Xu, 2014, Image sequence fusion and denoising based on 3D shearlet transform, J. Appl. Math., 2014, 652128:1, 10.1155/2014/652128
Lu, 2007, Multidimensional directional filter banks and surfacelets, IEEE Trans. Image Process., 16, 918, 10.1109/TIP.2007.891785
Ngyuen, 2010, Uniform discrete curvelet transform, IEEE Trans. Signal Process., 58, 3618, 10.1109/TSP.2010.2047666
Negi, 2012, 3D discrete shearlet transform and video processing, IEEE Trans. Image Process., 21, 2944, 10.1109/TIP.2012.2183883
Paul, 2013, Video search and indexing with reinforcement agent for interactive multimedia services, ACM Trans. Embedded Comput. Syst., 12, 25:1, 10.1145/2423636.2423643
Wang, 2012, Novel spatio-temporal structural information based video quality metric, IEEE Trans. Circuits Syst. Video Technol., 22, 989, 10.1109/TCSVT.2012.2186745
Bergqvist, 2010, The higher-order singular value decomposition: theory and application, IEEE Signal Process. Mag., 27, 151, 10.1109/MSP.2010.936030
Lathauwer, 2000, A multilinear singular value decomposition, SIAM J. Matrix Anal. Appl., 21, 1253, 10.1137/S0895479896305696
Tucker, 1966, Some mathematical notes on three-mode factor analysis, Psychometrika, 31, 279, 10.1007/BF02289464
Rajwade, 2013, Image denoising using the higher order singular value decomposition, IEEE Trans. Pattern Anal. Mach. Intell., 35, 849, 10.1109/TPAMI.2012.140
Wang, 2011, A novel face recognition method based on sub-pattern and tensor, Neurocomputing, 74, 3553, 10.1016/j.neucom.2011.06.017
Constantini, 2008, Higher order SVD analysis for dynamic texture synthesis, IEEE Trans. Image Process., 17, 42, 10.1109/TIP.2007.910956
Thomason, 2011, Higher order singular value decomposition of tensors for fusion of registered images, J. Electron. Imaging, 20, 013023:1, 10.1117/1.3563592
Liang, 2012, Image fusion using higher order singular value decomposition, IEEE Trans. Image Process., 21, 2898, 10.1109/TIP.2012.2183140
Kolda, 2009, Tensor decompositions and applications, SIAM Rev., 51, 455, 10.1137/07070111X
T.G. Kolda, Multilinear Operators for Higher-order Decompositions, Technical Report Number SAND 2006-2081, Sandia National Laboratories, Albuquerque, New Mexico and Livermore, California, April 2006.
Wu, 2010, Morphological dilation image coding with context weights prediction, Signal Process.: Image Commun., 25, 717
T. Zaveri, M. Zaveri, A novel hybrid pansharpening method using contourlet transform, in: Proceedings of the 3rd International Conference on Pattern Recognition and Machine Intelligence, 2009, pp. 363–368.
Zhang, 2011, Similarity-based multimodality image fusion with shiftable complex directional pyramid, Pattern Recogn. Lett., 32, 1544, 10.1016/j.patrec.2011.06.002
Wang, 2002, A universal image quality index, IEEE Signal Process. Lett., 9, 81, 10.1109/97.995823
G. Piella, New quality measures for image fusion, in: Proceedings of the 7th International Conference on Information Fusion, 2004, pp. 542–546.
Zhang, 2012, Video fusion performance evaluation based on structural similarity and human visual perception, Signal Process., 92, 912, 10.1016/j.sigpro.2011.10.004
V. Petrovic, T. Cootes, R. Pavlovic, Dynamic image fusion performance evaluation, in: Proceedings of the IEEE International Conference on Information Fusion, 2007, pp. 1–7.
Chou, 2011, Robust automatic rodent brain extraction using 3-D pulse-coupled neural networks (PCNN), IEEE Trans. Image Process., 20, 2554, 10.1109/TIP.2011.2126587
Gastal, 2011, Domain transform for edge-aware image and video processing, ACM Trans. Graph., 30, 69:1, 10.1145/2010324.1964964
Loza, 2010, Non-Gaussian model-based fusion of noisy images in the wavelet domain, Comput. Vis. Image Underst., 114, 54, 10.1016/j.cviu.2009.09.002
Do, 2005, The contourlet transform: an efficient directional multiresolution image representation, IEEE Trans. Image Process., 14, 2091, 10.1109/TIP.2005.859376