Multiscale modelling and nonlinear simulation of vascular tumour growth

Journal of Mathematical Biology - Tập 58 Số 4-5 - Trang 765-798 - 2009
Paul Macklin1, Steven Robert McDougall2, Alexander R.A. Anderson3, Mark A. J. Chaplain3, Vittorio Cristini4, John Lowengrub5
1School of Health Information Sciences, University of Texas Health Science Center, Houston, USA
2Institute of Petroleum Engineering, Heriot-Watt University, Edinburgh, Scotland, UK
3Division of Mathematics, University of Dundee, Dundee, Scotland, UK
4M.D. Anderson Cancer Center, Houston, TX, USA
5Mathematics Department, University of California, Irvine, CA 92697-3875, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alarcón T, Byrne HM, Maini PK (2005) A multiple scale model for tumor growth. Multiscale Model Simul 3: 440–475

Ambrosi D, Preziosi L (2002) On the closure of mass balance models for tumor growth. Math Model Meth Appl Sci 12(5): 737–754

Anderson ARA (2005) A hybrid mathematical model of solid tumour invasion: the importance of cell adhesion. IMA Math App Med Biol 22(2): 163–186

Anderson ARA, Chaplain MAJ (1998) Continuous and discrete mathematical models of tumor-induced angiogenesis. Bull Math Biol 60(5): 857–900

Anderson ARA, Weaver AM, Cummings PT, Quaranta V (2006) Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127(5): 905–915

Araujo RP, McElwain DLS (2004) A history of the study of solid tumor growth: the contribution of mathematical modeling. Bull Math Biol 66(5): 1039–1091

Araujo RP, McElwain DLS (2005) A mixture theory for the genesis of residual stresses in growing tissues I: a general formulation. SIAM J Appl Math 65: 1261–1284

Araujo RP, McElwain DLS (2005) A mixture theory for the genesis of residual stresses in growing tissues II: solutions to the biphasic equations for a multicell spheroid. SIAM J Appl Math 66(2): 447–467

Balding D, McElwain DLS (1985) A mathematical model of tumour-induced capillary growth. J Theor Biol 114: 53–73

Bartha K, Rieger H (2007) Vascular network remodeling via vessel cooption, regression and growth in tumors. J Theor Biol 241(4): 903–918

Byrne H, Preziosi L (2003) Modelling solid tumour growth using the theory of mixtures. Math Med Biol 20(4): 341–366

Byrne HM, Alarcón T, Owen MR, Webb SD, Maini PK (2006) Modeling aspects of cancer dynamics: a review. Phil Trans R Soc A 364(1843): 1563–1578

Byrne HM, Chaplain MAJ (1995) Growth of non-necrotic tumours in the presence and absence of inhibitors. Math Biosci 130: 151–181

Byrne HM, Chaplain MAJ (1996) Growth of necrotic tumours in the presence and absence of inhibitors. Math Biosci 135: 187–216

Byrne HM, Chaplain MAJ (1998) Free boundary problems arising in models of tumour growth and development. Eur J Appl Math 8: 639–658

Carmeliet P (2005) Angiogenesis in life, disease, and medicine. Nature 438: 932–936

Chaplain MAJ (1995) The mathematical modelling of tumour angiogenesis and invasion. Acta Biotheor 43: 387–402

Chaplain MAJ, McDougall SR, Anderson ARA (2006) Mathematical modelling of tumor-induced angiogenesis. Annu Rev Biomed Eng 8: 233–257

Chomyak OG, Sidorenko MV (2001) Multicellular spheroids model in oncology. Exp Oncol 23: 236–241

Cristini V, Frieboes HB, Gatenby R, Caserta S, Ferrari M, Sinek J (2005) Morphological instability and cancer invasion. Clin Cancer Res 11(19): 6772–6779

Cristini V, Li X, Lowengrub J, Wise S (2008) Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching. J Math Biol in press

Cristini V, Lowengrub JS, Nie Q (2003) Nonlinear simulation of tumor growth. J Math Biol 46: 191–224

Dickinson RB, Tranquillo RT (1993) A stochastic model for adhesion-mediated cell random motility and haptotaxis. J Math Biol 31: 563–600

DiMilla PA, Barbee K, Lauffenburger DA (1991) Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys J 60: 15–37

Erler JT, Bennewith KL, Nicolau M, Dornhöfer N, Kong C, Le QT, Chi JTA, Jeffrey SS, Giaccia AJ (2006) Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440(27): 1222–1226

Frieboes HB, Lowengrub JS, Wise S, Zheng X, Macklin P, Cristini V (2007) Computer simulations of glioma growth and morphology. NeuroImage 37(S1): S59–S70

Frieboes HB, Zheng X, Sun CH, Tromberg B, Gatenby R, Cristini V (2006) An integrated computational/experimental model of tumor invasion. Can Res 66(3): 1597–1604

Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3: 362–374

Galaris D, Barbouti A, Korantzopoulos P (2006) Oxidative stress in hepatic ischemia–reperfusion injury: the role of antioxidants and iron chelating compounds. Curr Pharm Des 12(23): 2875–2890

Gerlee P, Anderson ARA (2007) Stability analysis of a hybrid cellular automaton model of cell colony growth. Phys Rev E 75: 0151,911

Graziano L, Preziosi L (2007) Mechanics in tumor growth. In: Mollica F, Rajagopal KR, Preziosi L (eds) Modelling of Biological Materials. Birkhäuser, Boston, pp 267–328

Greenspan HP (1976) On the growth and stability of cell cultures and solid tumors. J Theor Biol 56(1): 229–242

Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1): 57–70

Hogea CS, Murray BT, Sethian JA (2006) Simulating complex tumor dynamics from avascular to vascular growth using a general level-set method. J Math Biol 53(1): 86–134

Holash J, Weigand SJ, Yancopoulos GD (1999) New model of tumor-induced angiogenesis; dynamic balance between vessel regresion and growth mediated by angiopoietins and vegf. Oncogene 18: 5356–5362

Kaur B, Khwaja FW, Severson EA, Matheny SL, Brat DJ, Van Meir EG (2005) Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro-oncology 7(2): 134–153

Kim JB (2005) Three-dimensional tissue culture models in canceriology. J Biomol Screen 15: 365–377

Kloner RA, Jennings RB (2001) Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1. Circulation 104(24): 2981–2989

Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R (2004) The use of 3-d cultures for high-throughput screening: the multicellular spheroid model. J Biomol Screen 9: 273–285

Lauffenburger DA, Horwitz AF (1996) Cell migration: a physically integrated molecular process. Cell 84(3): 359–369

Lee D, Rieger H (2006) Flow correlated percolation during vascular remodeling in growing tumors. Phys Rev Lett 96: 058,104

Li X, Cristini V, Nie Q, Lowengrub J (2007) Nonlinear three-dimensional simulation of solid tumor growth. Disc Dyn Contin Dyn Syst B 7: 581–604

Liotta LA, Clair T (2000) Checkpoint for invasion. Ann Ital Med Int 15(3): 195–198

Liotta LA, Stetler-Stevenson WG (1991) Tumor cell motility. Sem Canc Biol 2(2): 111–114

Macklin P, Lowengrub JS (2005) Evolving interfaces via gradients of geometry-dependent interior Poisson problems: application to tumor growth. J Comput Phys 203(1): 191–220

Macklin P, Lowengrub JS (2006) An improved geometry-aware curvature discretization for level set methods: application to tumor growth. J Comput Phys 215(2): 392–401

Macklin P, Lowengrub JS (2007) Nonlinear simulation of the effect of microenvironment on tumor growth. J Theor Biol 245(4): 677–704

Macklin P, Lowengrub JS (2008) A new ghost cell/level set method for moving boundary problems: Application to tumor growth. J Sci Comput (in press)

Mantzaris NV, Webb S, Othmer HG (2004) Mathematical modeling of tumor-induced angiogenesis. J Math Biol 49: 111–187

McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modelling of dynamic adaptive tumour-induced angiogenesis: clinical implications and therapeutic targeting strategies. J Theor Biol 241(3): 564–589

McDougall SR, Anderson ARA, Chaplain MAJ, Sherratt JA (2002) Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies. Bull Math Biol 64(4): 673–702

Orme ME, Chaplain MAJ (1996) A mathematical model of vascular tumour growth and invasion. Math Comp Modell 23: 43–60

Palecek SP, Loftus JC, Ginsberg MH, Lauffenburger DA, Horwitz AF (1997) Integrin-ligand binding properties govern cell migration speed through cell-substratum adhesiveness. Nature 385: 537–540

Paweletz N, Knierim M (1989) Tumor-related angiogenesis. Crit Rev Oncol Hematol 9: 197–242

Plank MJ, Sleeman BD (2004) Lattice and non-lattice models of tumour angiogenesis. Bull Math Biol 66: 1785–1819

Pouysségur J, Dayan F, Mazure NM (2006) Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441(25): 437–443

Pries AR, Reglin B, Secomb TW (2001) Structural adaptation of microvascular networks: functional roles of adaptive responses. Am J Physiol Heart Circ Physiol 281: H1015–H1025

Pries AR, Reglin B, Secomb TW (2001) Structural adaptation of vascular networks: role of the pressure response. Hypertension 38: 1476–1479

Pries AR, Secomb TW, Gaehtgens P (1995) Design principles of vascular beds. Circ Res 77: 1017–1023

Pries AR, Secomb TW, Gaehtgens P (1996) Biophysical aspects of blood flow in the microvasculature. Cardivasc Res 32: 654–667

Pries AR, Secomb TW, Gaehtgens P (1998) Structural adaptation and stability of microvascular netwoks: theory and simulation. Am J Physiol Heart Circ Physiol 275(44): H349–H360

Quaranta V, Weaver AM, Cummings PT, Anderson ARA (2005) Mathematical modeling of cancer: the future of prognosis and treatment. Clin Chim Acta 357(2): 173–179

Roose T, Chapman SJ, Maini PK (2007) Mathematical models of avascular cancer. SIAM Rev 49: 179–208

Sanga S, Sinek JP, Frieboes HB, Fruehauf JP, Cristini V (2006) Mathematical modeling of cancer progression and response to chemotherapy. Exp Rev Anticancer Ther 6(10): 1361–1376

Sinek J, Frieboes H, Zheng X, Cristini V (2004) Two-dimensional chemotherapy simulations demonstrate fundamental transport and tumor response limitations involving nanoparticles. Biomed Microdev 6(4): 197–309

Stephanou A, McDougall SR, Anderson ARA, Chaplain MAJ (2005) Mathematical modelling of flow in 2d and 3d vascular networks: applications to anti-angiogenic and chemotherapeutic drug strategies. Math Comput Modell 41: 1137–1156

Stéphanou A, McDougall SR, Anderson ARA, Chaplain MAJ (2006) Mathematical modelling of the influence of blood rheological properties upon adaptive tumour-induced angiogenesis. Math Comp Model 44(1–): 96–123

Thompson DW (1917) On Growth and Form. Cambridge University Press, Cambridge

Walles T, Weimer M, Linke K, Michaelis J, Mertsching H (2007) The potential of bioartificial tissues in oncology research and treatment. Onkologie 30: 388–394

Welter M, Bartha K, Rieger H (2008) Emergent vascular network inhomogenities and resulting blood flow patterns in a growing tumor. J Theor Biol 250: 257–280

Zheng X, Wise SM, Cristini V (2005) Nonlinear simulation of tumor necrosis, neo-vascularization and tissue invasion via an adaptive finite-element/level set method. Bull Math Biol 67(2): 211–259