Multiscale method based on coupled lattice‐Boltzmann and Langevin‐dynamics for direct simulation of nanoscale particle/polymer suspensions in complex flows

International Journal for Numerical Methods in Fluids - Tập 91 Số 5 - Trang 228-246 - 2019
Zixiang Liu1,2, Yuanzheng Zhu1, Jonathan Clausen3, Jeremy B. Lechman3, Rekha R. Rao3, Cyrus K. Aidun4,1,2
1George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia
2Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia
3Sandia National Laboratories, Albuquerque, New Mexico
4Cyrus K. Aidun, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332.

Tóm tắt

SummaryA hybrid computational method coupling the lattice‐Boltzmann (LB) method and a Langevin‐dynamics (LD) method is developed to simulate nanoscale particle and polymer (NPP) suspensions in the presence of both thermal fluctuation and long‐range many‐body hydrodynamic interactions (HIs). Brownian motion of the NPP is explicitly captured by a stochastic forcing term in the LD method. The LD method is two‐way coupled to the nonfluctuating LB fluid through a discrete LB forcing source distribution to capture the long‐range HI. To ensure intrinsically linear scalability with respect to the number of particles, a Eulerian‐host algorithm for short‐distance particle neighbor search and interaction is developed and embedded to LB‐LD framework. The validity and accuracy of the LB‐LD approach are demonstrated through several sample problems. The simulation results show good agreements with theory and experiment. The LB‐LD approach can be favorably incorporated into complex multiscale computational frameworks for efficiently simulating multiscale multicomponent particulate suspension systems such as complex blood suspensions.

Từ khóa


Tài liệu tham khảo

10.1146/annurev.fl.13.010181.002233

10.1023/A:1010414013942

10.1063/1.465445

10.1063/1.474784

10.1063/1.436761

10.1146/annurev.fl.20.010188.000551

10.1017/S0022112099006576

10.1017/S0022112099007557

10.1017/S0022112004008651

10.1063/1.1571819

10.1017/S0022112001005912

10.1063/1.3672103

10.1016/j.jcp.2015.11.042

Landau LD, 1959, Fluid Mechanics, by L.D. Landau and E.M. Lifshitz

10.1007/BF01030307

10.1016/0378-4371(82)90107-8

10.1103/PhysRevLett.70.1339

10.1017/S0022112094001771

Ahlrichs P, 1998, Lattice Boltzmann simulation of polymer‐solvent systems, Int J Mod Phys C, 1

10.1063/1.480156

Fyta MG, 2007, Multiscale coupling of molecular dynamics and hydrodynamics: application to dna translocation through a nanopore, Simulation, 5, 18

10.1103/PhysRevE.78.036704

10.1016/j.cpc.2009.04.001

10.1098/rsta.2011.0047

10.1007/BF02181482

10.1103/PhysRevE.65.046308

10.1115/1.4039897

10.1063/1.5025349

10.1016/j.jbiomech.2019.01.010

10.1016/j.compfluid.2018.03.022

ClausenJ LiuZ BolintineanuD et al.Analysis of nanoparticle transport in blood flow through microvascular bifurcations. Paper presented at: 71st Annual Meeting of the APS Division of Fluid Dynamics;2018;Atlanta GA.

10.1007/BF02179967

10.1017/S0022112098002493

10.1146/annurev-fluid-121108-145519

10.1103/PhysRev.94.511

10.1098/rsta.2001.0955

10.1017/jfm.2014.393

10.1017/jfm.2014.54

10.1103/PhysRevE.90.031302

10.1017/jfm.2018.413

10.1016/j.jcp.2005.05.003

10.1017/S0022112000001932

10.1023/A:1023299617476

10.1017/jfm.2011.307

10.1017/jfm.2013.229

10.1016/j.cpc.2010.02.005

10.1017/CBO9780511894671

10.1088/0034-4885/29/1/306

Usta OB, 2005, Lattice‐Boltzmann simulations of the dynamics of polymer solutions in periodic and confined geometries, J Chem Phys, 122, 1

10.1214/aoms/1177706645

10.1017/S0962492902000077

10.1002/fld.2043

10.1103/PhysRevE.67.041710

10.1122/1.3690105

10.1016/S0031-8914(37)80203-7

10.1007/s40571-014-0007-6

10.1103/PhysRevLett.97.138101

10.1063/1.458541

10.1073/pnas.0608422104

10.1103/PhysRev.159.98

10.1887/0852743920

10.1103/PhysRevA.1.18

10.1063/1.458830

10.1007/BF02183148

10.1122/1.551104

10.1021/la971089y

10.1103/PhysRevE.50.R16

10.1063/1.479605

10.1122/1.1835336

10.1063/1.1699180

10.1063/1.1742462

10.1088/0953-8984/23/3/033102

10.1126/science.276.5321.2016

10.1088/0022-3719/5/15/006

10.1182/blood-2014-05-378638

10.1017/jfm.2019.320

10.1002/fld.2534

10.1146/annurev-bioeng-071516-044539