Multiscale metallic metamaterials

Nature Materials - Tập 15 Số 10 - Trang 1100-1106 - 2016
Xiaoyu Zheng1, William L. Smith2, Julie A. Jackson2, Bryan D. Moran2, Huachen Cui1, Da Chen1, Jianchao Ye2, Nicholas X. Fang3, Nicholas Rodriguez2, Todd H. Weisgraber2, Christopher M. Spadaccini2
1Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
2Lawrence Livermore National Laboratory, Livermore, California 94550, USA
3Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bauer, J., Schroer, A., Schwaiger, R. & Kraft, O. Approaching theoretical strength in glassy carbon nanolattices. Nature Mater. 15, 438–443 (2016).

Jang, D., Meza, L. R., Greer, F. & Greer, J. R. Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nature Mater. 12, 893–898 (2013).

Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

Zheng, X. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

Zhang, H. G., Yu, X. D. & Braun, P. V. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nature Nanotech. 6, 277–281 (2011).

Bonaccorso, F. et al. Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347, http://dx.doi.org/10.1126/science.1246501 (2015).

Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon. 5, 523–530 (2011).

Vignolini, S. et al. A 3D optical metamaterial made by self-assembly. Adv. Mater. 24, Op23–Op27 (2012).

Zheng, X. Y. et al. Design and optimization of a light-emitting diode projection micro-stereolithography three-dimensional manufacturing system. Rev. Sci. Instrum. 83, 125001 (2012).

Bauer, J., Hengsbach, S., Tesari, I., Schwaiger, R. & Kraft, O. High-strength cellular ceramic composites with 3D microarchitecture. Proc. Natl Acad. Sci. USA 111, 2453–2458 (2014).

Zheng, X. et al. Proc. IEEE 27th Int. Conf. Micro Electro Mechanical Systems (MEMS) 510–513 (IEEE, 2014).

Bauer, J. et al. Push-to-pull tensile testing of ultra-strong nanoscale ceramic–polymer composites made by additive manufacturing. Extreme Mech. Lett. 3, 105–112 (2015).

Buckmann, T., Kadic, M., Schittny, R. & Wegener, M. Mechanical cloak design by direct lattice transformation. Proc. Natl Acad. Sci. USA 112, 4930–4934 (2015).

Meza, L. R. et al. Resilient 3D hierarchical architected metamaterials. Proc. Natl Acad. Sci. USA 112, 11502–11507 (2015).

Gansel, J. K. et al. Gold Helix photonic metamaterial as broadband circular polarizer. Science 325, 1513–1515 (2009).

Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

Ferreira, A. & Peres, N. M. R. Complete light absorption in graphene-metamaterial corrugated structures. Phys. Rev. B 86, 205401 (2012).

Sun, K. et al. 3D printing of interdigitated Li-ion microbattery architectures. Adv. Mater. 25, 4539–4543 (2013).

Xu, S. et al. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154–159 (2015).

Ahn, B. Y. et al. Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes. Science 323, 1590–1593 (2009).

Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334, 962–965 (2011).

Qiu, L., Liu, J. Z., Chang, S. L. Y., Wu, Y. Z. & Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nature Commun. 3, 1241 (2012).

Maloney, K. J. et al. Microlattices as architected thin films: analysis of mechanical properties and high strain elastic recovery. APL Mater. 1, 022106 (2013).

Rayneau-Kirkhope, D., Mao, Y. & Farr, R. Ultralight fractal structures from hollow tubes. Phys. Rev. Lett. 109, 204301 (2012).

Biener, M. M. et al. Ultra-strong and low-density nanotubular bulk materials with tunable feature sizes. Adv. Mater. 26, 4808–4813 (2014).

Tillotson, T. M. & Hrubesh, L. W. Transparent ultralow-density silica aerogels prepared by a 2-step sol-gel process. J. Non-Cryst. Solids 145, 44–50 (1992).

Kucheyev, S. O. et al. Super-compressibility of ultralow-density nanoporous silica. Adv. Mater. 24, 776–780 (2012).

Torrents, A., Schaedler, T. A., Jacobsen, A. J., Carter, W. B. & Valdevit, L. Characterization of nickel-based microlattice materials with structural hierarchy from the nanometer to the millimeter scale. Acta Mater. 60, 3511–3523 (2012).

Kim, S. H., Kim, H. & Kim, N. J. Brittle intermetallic compound makes ultrastrong low-density steel with large ductility. Nature 518, 77–79 (2015).

Ashby, M. F. The properties of foams and lattices. Phil. Trans. R. Soc. A 364, 15–30 (2006).

Lakes, R. Materials with structural hierarchy. Nature 361, 511–515 (1993).

Kooistra, G. W., Deshpande, V. & Wadley, H. N. G. Hierarchical corrugated core sandwich panel concepts. J. Appl. Mech. 74, 259–268 (2005).

Oftadeh, R., Haghpanah, B., Vella, D., Boudaoud, A. & Vaziri, A. Optimal fractal-like hierarchical honeycombs. Phys. Rev. Lett. 113, 104301 (2014).

Rayneau-Kirkhope, D., Mao, Y. & Farr, R. Optimization of fractal space frames under gentle compressive load. Phys. Rev. E. 87, 063204 (2013).

Rho, J. Y., Kuhn-Spearing, L. & Zioupos, P. Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20, 92–102 (1998).

Ritchie, R. O. The conflicts between strength and toughness. Nature Mater. 10, 817–822 (2011).

Hall, G. S. Chemist’s wood. Nature 310, 521 (1984).

Wang, L. H. et al. In situ atomic-scale observation of continuous and reversible lattice deformation beyond the elastic limit. Nature Commun. 4, 2413 (2013).

Rys, J. et al. Fabrication and deformation of metallic glass micro-lattices. Adv. Eng. Mater. 16, 889–896 (2014).

Keong, K. G., Sha, W. & Malinov, S. Crystallisation kinetics and phase transformation behaviour of electroless nickel–phosphorus deposits with high phosphorus content. J. Alloys Compd. 334, 192–199 (2002).

Dong, L., Deshpande, V. & Wadley, H. Mechanical response of Ti-6Al-4V octet-truss lattice structures. Int. J. Solids Struct. 60–61, 107–124 (2015).

Valdevit, L., Godfrey, S. W., Schaedler, T. A., Jacobsen, A. J. & Carter, W. B. Compressive strength of hollow microlattices: experimental characterization, modeling, and optimal design. J. Mater. Res. 28, 2461–2473 (2013).

Sun, H., Xu, Z. & Gao, C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels. Adv. Mater. 25, 2554–2560 (2013).

Kato, K. et al. Cytocompatibility and mechanical properties of novel porous 316 L stainless steel. Mater. Sci. Eng. C 33, 2736–2743 (2013).

Olurin, O. B., Fleck, N. A. & Ashby, M. F. Deformation and fracture of aluminium foams. Mater. Sci. Eng. A 291, 136–146 (2000).

Andrews, E., Sanders, W. & Gibson, L. J. Compressive and tensile behaviour of aluminum foams. Mater. Sci. Eng. A 270, 113–124 (1999).

Kashef, S. et al. Fracture toughness of titanium foams for medical applications. Mater. Sci. Eng. A 527, 7689–7693 (2010).