Multiscale geometric methods for data sets I: Multiscale SVD, noise and curvature
Tài liệu tham khảo
Tenenbaum, 2000, A global geometric framework for nonlinear dimensionality reduction, Science, 290, 2319, 10.1126/science.290.5500.2319
Roweis, 2000, Nonlinear dimensionality reduction by locally linear embedding, Science, 290, 2323, 10.1126/science.290.5500.2323
M. Belkin, P. Niyogi, Using manifold structure for partially labelled classification, Advances in NIPS 15.
Donoho, 2002
Donoho, 2003, Hessian eigenmaps: new locally linear embedding techniques for high-dimensional data, 5591
Zhang, 2002, Principal manifolds and nonlinear dimension reduction via local tangent space alignment, SIAM J. Sci. Comput., 26, 313, 10.1137/S1064827502419154
Coifman, 2005, Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps, Proc. Natl. Acad. Sci., 102, 7426, 10.1073/pnas.0500334102
Wakin, 2005, The multiscale structure of non-differentiable image manifolds
Donoho, 2002
Costa, 2004, Learning intrinsic dimension and intrinsic entropy of high dimensional datasets
Camastra, 2001, Intrinsic dimension estimation of data: an approach based on Grassberger–Procaccia's algorithm, Neural Process. Lett., 14, 27, 10.1023/A:1011326007550
Camastra, 2002, Estimating the intrinsic dimension of data with a fractal-based method, IEEE Trans. Pattern Anal. Mach. Intell., 24, 1404, 10.1109/TPAMI.2002.1039212
Cao, 2006, Nonlinear manifold clustering by dimensionality, 920
Rohrdanz, 2011, Determination of reaction coordinates via locally scaled diffusion map, J. Chem. Phys., 134, 10.1063/1.3569857
Zheng, 2011, Polymer reversal rate calculated via locally scaled diffusion map, J. Chem. Phys., 134, 10.1063/1.3575245
Allard, 2012, Multi-scale geometric methods for data sets II: geometric multi-resolution analysis, Appl. Comput. Harmon. Anal., 32, 435, 10.1016/j.acha.2011.08.001
Iwen, 2013, Approximation of points on low-dimensional manifolds via random linear projections, Inference Inf., 2, 1, 10.1093/imaiai/iat001
Chen, 2012, A fast multiscale framework for data in high-dimensions: measure estimation, anomaly detection, and compressive measurements, 1
Maggioni, 2013, Geometric measure estimation, 1363
Chen, 2011
Chen, 2011, Multiscale geometric and spectral analysis of plane arrangements
Zhang, 2012, Hybrid linear modeling via local best-fit flats, J. Comput. Vis., 100, 217, 10.1007/s11263-012-0535-6
Lafon, 2004
Coifman, 2006, Diffusion maps, Appl. Comput. Harmon. Anal., 21, 5, 10.1016/j.acha.2006.04.006
Crosskey, 2016, Atlas: a geometric approach to learning high-dimensional stochastic systems near manifolds, Multiscale Model. Simul.
Muldoon, 1993, Topolgy from time series, Phys. D, 65, 1, 10.1016/0167-2789(92)00026-U
Broomhead, 1991, Local adaptive Galerkin bases for large dimensional dynamical systems, Nonlinearity, 4, 159, 10.1088/0951-7715/4/2/001
Farmer, 1987, Predicting chaotic time series, Phys. Rev. Lett., 59, 845, 10.1103/PhysRevLett.59.845
Jones, 1991, The traveling salesman problem and harmonic analysis, Publ. Mat., 35, 259, 10.5565/PUBLMAT_35191_12
G. David, S. Semmes, Uniform Rectifiability and Quasiminimizing Sets of Arbitrary Codimension, AMS.
David, 1991
Little, 2009, Multiscale estimation of intrinsic dimensionality of data sets
Little, 2009, Estimation of intrinsic dimensionality of samples from noisy low-dimensional manifolds in high dimensions with multiscale SVD
Chen, 2011, Multi-resolution geometric analysis for data in high dimensions
A.V. Little, Estimating the Intrinsic Dimension of High-Dimensional Data Sets: A Multiscale, Geometric Approach, April 2011.
Jones, 1990, Rectifiable sets and the traveling salesman problem, Invent. Math., 102, 1, 10.1007/BF01233418
G. David, J. Journé, A boundedness criterion for generalized Calderón–Zygmund operators, Annals of Mathematics.
David, 1993, Analysis of and on Uniformly Rectifiable Sets, vol. 38
Schul
Rudelson, 1999, Random vectors in the isotropic position, J. Funct. Anal., 164, 60, 10.1006/jfan.1998.3384
R. Vershynin, Introduction to the non-asymptotic analysis of random matrices, Aug. 2010.
Fukunaga, 1976, An algorithm for finding intrinsic dimensionality of data, IEEE Trans. Comput., 20, 165
Bruske, 1998, Intrinsic dimensionality estimation with optimally topology preserving maps, IEEE Trans. Comput., 20, 572
Hundley, 2003, Estimation of topological dimension, 194
Kirby, 2000
P.J. Verveer, R.P. Duin, An evaluation of intrinsic dimensionality estimators, IEEE Trans. Pattern Anal. Mach. Intell. 17 (1).
E. Levina, P. Bickel, Maximum likelihood estimation of intrinsic dimension, in: Advances in NIPS 17, Vancouver, Canada.
Haro, 2008, Translated Poisson mixture model for stratification learning, Int. J. Comput. Vis., 80, 358, 10.1007/s11263-008-0144-6
Carter, 2008, Variance reduction with neighborhood smoothing for local intrinsic dimension estimation, 3917
Carter, 2007, De-biasing for intrinsic dimension estimation, 601
Costa, 2004, Geodesic entropic graphs for dimension and entropy estimation in manifold learning, IEEE Trans. Signal Process., 52, 2210, 10.1109/TSP.2004.831130
Raginsky, 2005, Estimation of intrinsic dimensionality using high-rate vector quantization, 1105
Takens, 1985, On the numerical determination of the dimension of an attractor, vol. 1125, 99
Hein, 2005, Intrinsic dimensionality estimation of submanifolds in Euclidean space, 289
Borovkova, 1999, Consistency of the Takens estimator for the correlation dimension, Ann. Appl. Probab., 9, 376, 10.1214/aoap/1029962747
Grassberger, 1983, Measuring the strangeness of strange attractors, Phys. D, 9, 189, 10.1016/0167-2789(83)90298-1
A.M. Farahmand, C.S.J.-Y. Audibert, Manifold-adaptive dimension estimation, Proc. I.C.M.L.
Broomhead, 1987, Topological dimension and local coordinates from time series data, J. Phys. A: Math. Gen., 20, L563, 10.1088/0305-4470/20/9/003
Broomhead, 1991, Local adaptive Galerkin bases for large-dimensional dynamical systems, Nonlinearity, 4, 159, 10.1088/0951-7715/4/2/001
Lee, 1997
Har-Peled, 2006, Fast construction of nets in low-dimensional metrics and their applications, SIAM J. Comput., 35, 1148, 10.1137/S0097539704446281
Beygelzimer, 2006, Cover trees for nearest neighbor, 97
Rokhlin, 2009, A randomized algorithm for principal component analysis, SIAM J. Matrix Anal. Appl., 31, 1100, 10.1137/080736417
Haro, 2008, Translated Poisson mixture model for stratification learning, Int. J. Comput. Vis., 80, 358, 10.1007/s11263-008-0144-6
Levina, 2005, Maximum likelihood estimation of intrinsic dimension, vol. 17, 777
Costa, 2004, Geodesic entropic graphs for dimension and entropy estimation in manifold learning, IEEE Trans. Signal Process., 52, 2210, 10.1109/TSP.2004.831130
Carter, 2008, Variance reduction with neighborhood smoothing for local intrinsic dimension estimation, 3917
M. Chen, J. Silva, J. Paisley, C. Wang, D. Dunson, L. Carin, Compressive sensing on manifolds using a nonparametric mixture of factor analyzers: Algorithm and performance bounds, IEEE Trans. Signal Process.
H. Chen, J. Silva, D. Dunson, L. Carin, Hierarchical bayesian embeddings for analysis and synthesis of dynamic data, submitted for publication.
Kegl, 2002, Intrinsic dimension estimation using packing numbers, 681
Fan, 2009, Intrinsic dimension estimation of manifolds by incising balls, Pattern Recognit., 42, 780, 10.1016/j.patcog.2008.09.016
Johnson, 1984, Extension of Lipschitz maps into a Hilbert space, Contemp. Math., 26, 189, 10.1090/conm/026/737400
R. Baraniuk, M. Wakin, Random projections of smooth manifolds, preprint.
Jones, 2008, Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels, Proc. Natl. Acad. Sci., 105, 1803, 10.1073/pnas.0710175104
Jones, 2010, Universal local manifold parametrizations via heat kernels and eigenfunctions of the Laplacian, Ann. Acad. Scient. Fenn., 35, 1
Singer, 2009, Detecting intrinsic slow variables in stochastic dynamical systems by anisotropic diffusion maps, Proc. Natl. Acad. Sci., 106, 16090, 10.1073/pnas.0905547106
R. Vershynin, How close is the sample covariance matrix to the actual covariance matrix? Submitted for publication.
Mandelbrot, 2004
Jones, 1990, Rectifiable sets and the traveling salesman problem, Invent. Math., 102, 1, 10.1007/BF01233418
Verma, 2009, Which spatial partition trees are adaptive to intrinsic dimension?, 565
Johnstone, 2001, On the distribution of the largest eigenvalue in principal components analysis, Ann. Statist., 29, 295, 10.1214/aos/1009210544
Baik, 2006, Eigenvalues of large sample covariance matrices of spiked population models, J. Multivariate Anal., 97, 1382, 10.1016/j.jmva.2005.08.003
Silverstein, 2007, On the empirical distribution of eigenvalues of large dimensional information-plus-noise type matrices, J. Multivariate Anal., 98, 678, 10.1016/j.jmva.2006.09.006
Koltchinskii, 2000, Empirical geometry of multivariate data: a deconvolution approach, Ann. Statist., 28, 591, 10.1214/aos/1016218232
Paul, 2007, Asymptotics of sample eigenstructure for a large dimensional spiked covariance model, Statist. Sinica, 17, 1617
Nadler, 2008, Finite sample approximation results for principal component analysis: a matrix perturbation approach, Ann. Statist., 36, 2791, 10.1214/08-AOS618
D.N. Kaslovsky, F.G. Meyer, Optimal Tangent Plane Recovery From Noisy Manifold Samples, ArXiv e-prints.
Chernoff, 1952, A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations, Ann. Statist., 23, 493, 10.1214/aoms/1177729330
Niyogi, 2008, Finding the homology of submanifolds with high confidence from random samples, Discrete Comput. Geom., 39, 419, 10.1007/s00454-008-9053-2
Barvinok
Wielandt, 1967
Pinelis, 1992, An approach to inequalities for the distributions of infinite-dimensional martingales, 128
Pinelis, 1994, Optimum bounds for the distributions of martingales in Banach spaces, Ann. Probab., 22, 1679, 10.1214/aop/1176988477
Buldygin, 2000
Rudelson, 2009, The smallest singular value of a random rectangular matrix, Comm. Pure Appl. Math., 1707, 10.1002/cpa.20294