Multiscale behavior of crack initiation and growth in piezoelectric ceramics

Theoretical and Applied Fracture Mechanics - Tập 34 Số 2 - Trang 123-141 - 2000
G. C. Sih1, Jiachang Zuo2
1Department of Mechanical Engineering and Mechanics, Lehigh University, Bethlehem, PA 18015-3006, USA
2Department of Engineering Mechanics, School of Advanced Science and Technology, Xi'an Jiaotong University, Xi'an Shaanxi 710049, People's Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Suo, 1992, Fracture mechanics for piezoelectric ceramics, J. Mech. Phys. Solids, 40, 739, 10.1016/0022-5096(92)90002-J

Sosa, 1992, On the fracture mechanics of piezoelectric solids, Int. J. Solids Struct., 29, 2622, 10.1016/0020-7683(92)90225-I

Gao, 1997, Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic, J. Mech. Phys. Solids, 45, 491, 10.1016/S0022-5096(96)00108-1

Park, 1995, Fracture criterion of piezoelectric ceramics, J. Am. Ceram. Soc., 78, 1475, 10.1111/j.1151-2916.1995.tb08840.x

G.C. Sih, Fracture Toughness Concepts, Properties Related to Fracture Toughness STP 605, American Society of Testing and Materials, Philadelphia, 1976, pp. 3–15

Sih, 1985, Non-self similar crack growth in an elastic–plastic finite thickness plate, J. Theoret. Appl. Fracture Mech., 3, 125, 10.1016/0167-8442(85)90024-2

G.C. Sih, Mechanics of Fracture, Vol. I–VII, Sijhoff and Noordhoff, The Netherlands, pp. 1973–1981

Sih, 1991

P.V. Makarov, Character of localized deformation and fracture of solids at mesolevel, in: G.C. Sih (Ed.), Mesomechanics 2000: Role of Mechanics for Development of Science and Technology, vol. I, Tsinghua University Press, 2000, pp. 143–152

I.Y. Smolin, P.V. Makarov, Y.P. Stefanov, D.V. Shmick, I.V. Savlevich, Antisymmetric stress component associated with polycrystal deformation and fracture of mesovolumes, in: G.C. Sih (Ed.), Mesomechanics 2000: Role of Mechanics for Development of Science and Technology, vol. I, Tsinghua University Press, 2000, pp. 193–198

Popov, 1998, On the role of scaling in the theory of elastoplasticity, J. Physical Mesomechanics, 1, 103

Private communication with D.N. Fang, Fracture Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing, China, April 2000

Lu, 1999, Nonlinear electric–mechanical behavior and micromechanics modelling of ferroelectric domain evolution, Acta Mater., 47, 2913, 10.1016/S1359-6454(99)00153-6

Fang, 1999, Nonlinear electric–mechanical behavior of a soft PZT-51 ferroelectric ceramic, J. Mater. Sci., 34, 4001, 10.1023/A:1004603729657

C.T. Sun, L.Z. Jiang, Domain switching induced stresses at the tip of a crack in piezoceramics, in: Proceedings of the Fourth European Conference on Smart Structures and Mat'Ls, Harrogate, UK, 1998, pp. 715–722

C.T. Sun, I. Chang, Singular stress field near crack tip in Piezoceramics under electrical and mechanical loading, in: G.C. Sih (Ed.), Mesomechanics 2000: Role of Mechanics for Development of Science and Technology, vol. II, Tsinghua University Press, 2000, pp. 819–826

Tobin, Y.E. Pak, Effects if electric fields on fracture behavior of PZT ceramics, in: V.K. Varadan (Ed.), Smart Materials, SPIE, vol. 1916, 1993, pp.78–86

Y.E. Pak, A. Tobin, On the electric field effects in fracture of piezoelectric materials, Mechanics of Electromagnetic Materials and Structures, AMD-vol. 161/MD-vol. 42, ASME, 1993

Sih, 1983, Path dependent nature of fatigue crack growth, J. Engrg. Fracture Mech., 17, 269, 10.1016/0013-7944(83)90033-4

J.Z. Zuo, G.C. Sih, Energy density theory formulation and interpretation of cracking behavior for piezoelectric ceramics, J. Theoret. Appl. Fracture Mech. 34 (2000) 17

Sih, 1993, Subcritical crack growth in elastic–plastic material with overshoot: Part I – analytical modelling, J. Theoret. Appl. Fracture Mech., 18, 115, 10.1016/0167-8442(93)90039-E

Sih, 1993, Subcritical crack growth in elastic–plastic material with overshoot: Part II – Numerical computation, J. Theoret. Appl. Fracture Mech., 18, 131, 10.1016/0167-8442(93)90040-I

S. Shen, T. Nishioka, Fracture of piezoelectric materials: energy density criterion, J. Theoret. Appl. Fracture Mech. 33 (2000) 57

Z.T. Chen, Anti-plane mechanical and in-plane electric time-dependent load applied to two coplanar cracks in piezoelectric ceramic material, J. Theoret. Appl. Fracture Mech. 33 (3) (2000)

B.L. Wang, N. Noda, Mixed mode crack initiation in piezoelectric ceramic strip, J. Theoret. Appl. Fracture Mech. 34 (2000) 35

Sih, 1989, Review of triaxial crack border stress and energy behavior, J. Theoret. Appl. Fracture Mech., 12, 1, 10.1016/0167-8442(89)90011-6

Sih, 1990, Initiation and growth characterization of corner cracks near circular hole, J. Theoret. Appl. Fracture Mech., 13, 69, 10.1016/0167-8442(90)90017-T

Panin, 1998, Overview on mesomechanics of plastic deformation and fracture of solids, J. Theoret. Appl. Fracture Mech., 30, 1, 10.1016/S0167-8442(98)00038-X

Sih, 1988, Thermomechanics of solids: nonequilibrium and irreversibility, J. Theoret. Appl. Fracture Mech., 9, 175, 10.1016/0167-8442(88)90030-4

Sih, 1989, Nonequilibrium thermal/mechanical response of 6061 aluminum alloy at elevated temperature, J. Theoret. Appl. Fracture Mech., 12, 19, 10.1016/0167-8442(89)90012-8

G.C. Sih, Micromechanics associated with thermal/mechanical interaction for polycrystals, in: G.C. Sih (Ed.), Mesomechanics 2000: Role of Mechanics for Development of Science and Technology, vol. I, Tsinghua University Press, 2000, pp. 3–20