Multiscale Phase Behaviors of Nematic Solids: A Short Review

Multiscale Science and Engineering - Tập 4 Số 1-2 - Trang 28-36 - 2022
Byeonghyeon Go1, Juheon Kim1, Semin Lee1, Youngtaek Oh1, Jeseung Moon1, Hannah Chung1
1Department of Mechanical Engineering, Ulsan National Institute of Science and Technology, 50 Unist-gil, Ulsan, 44919, South Korea

Tóm tắt

Từ khóa


Tài liệu tham khảo

G. Babakhanova, T. Turiv, Y. Guo et al., Liquid crystal elastomer coatings with programmed response of surface profile. Nat. Commun. 9(1), 1–9 (2018)

F. Cheng, R. Yin, Y. Zhang et al., Fully plastic microrobots which manipulate objects using only visible light. Soft Matter 6(15), 3447–3449 (2010)

J. Choi, H. Chung, J.H. Yun et al., Photo-isomerization effect of the azobenzene chain on the opto-mechanical behavior of nematic polymer: a molecular dynamics study. Appl. Phys. Lett. 105(22), 221906 (2014)

J. Choi, H. Shin, M. Cho, Multiscale multiphysical analysis of photo-mechanical properties of interphase in light-responsive polymer nanocomposites. Compos. Sci. Technol. 160, 32–41 (2018)

H. Chung, J. Choi, J.H. Yun et al., Light and thermal responses of liquid-crystal-network films: a finite element study. Phys. Rev. E 91(4), 042503 (2015). https://doi.org/10.1103/PhysRevE.91.042503

H. Chung, J. Choi, J.H. Yun et al., Nonlinear photomechanics of nematic networks: upscaling microscopic behaviour to macroscopic deformation. Sci. Rep. 6(1), 20026 (2016). https://doi.org/10.1038/srep20026

H. Chung, J.H.J.H. Yun, J. Choi et al., Finite-element analysis of the optical-texture-mediated photoresponse in a nematic strip. Comput. Mech. 59(1), 147–160 (2017). https://doi.org/10.1007/s00466-016-1340-9

F. Davis, G. Mitchell, Liquid crystal elastomers: controlled crosslinking in the liquid crystal phase. Polymer 37(8), 1345–1351 (1996)

P.G. De Gennes, J. Prost, The Physics of Liquid Crystals, 83 (Oxford University Press, Oxford, 1993)

M.L. Dunn, K. Maute, Photomechanics of blanket and patterned liquid crystal elastomer films. Mech. Mater. 41(10), 1083–1089 (2009). https://doi.org/10.1016/j.mechmat.2009.06.004

J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241(1226), 376–396 (1957)

G. Fernández, Exotic actuators. Nat. Mater. 12(1), 12–14 (2013)

K. Fuchi, T.H. Ware, P.R. Buskohl et al., Topology optimization for the design of folding liquid crystal elastomer actuators. Soft Matter 11(37), 7288–7295 (2015). https://doi.org/10.1039/C5SM01671A

V. Gimenez-Pinto, F. Ye, Patterning order and disorder with an angle: Modeling single-layer dual-phase nematic elastomer ribbons. RSC Adv. 9(16), 8994–9000 (2019). https://doi.org/10.1039/c8ra09375j

L.T. de Haan, C. Sánchez-Somolinos, C.M. Bastiaansen et al., Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. Angew. Chem. 124(50), 12637–12640 (2012)

L.T. de Haan, V. Gimenez-Pinto, A. Konya et al., Accordion-like actuators of multiple 3D patterned liquid crystal polymer films. Adv. Funct. Mater. 24(9), 1251–1258 (2014). https://doi.org/10.1002/adfm.201302568

L.T. de Haan, A.P. Schenning, D.J. Broer, Programmed morphing of liquid crystal networks. Polymer 55(23), 5885–5896 (2014). https://doi.org/10.1016/j.polymer.2014.08.023

X.H. Han, X.W. Yang, S. Chen et al., Multiple effects tailoring the self-organization behaviors of triphenylene side-chain liquid crystalline polymers via changing the spacer length. Chin J Polym Sci 36(8), 960–969 (2018). https://doi.org/10.1007/S10118-018-2108-9

T. Hu, J. Yi, J. Xiao et al., Effect of flexible spacer length on the mesophase structures of main-chain/side-chain liquid crystalline polymers based on ethyl cellulose. Polym J 42(9), 752–758 (2010). https://doi.org/10.1038/pj.2010.67

J.M. Ilnytskyi, M. Saphiannikova, D. Neher et al., Modelling elasticity and memory effects in liquid crystalline elastomers by molecular dynamics simulations. Soft Matter 8(43), 11123–11134 (2012)

K. Karapiperis, L. Stainier, M. Ortiz et al., Data-driven multiscale modeling in mechanics. J. Mech. Phys. Solids 147(104), 239 (2021)

M.A. Keip, O. Nadgir, An electro-elastic phase-field model for nematic liquid crystal elastomers based on Landau-de-Gennes theory. GAMM Mitteilungen 40(2), 102–124 (2017). https://doi.org/10.1002/gamm.201720003

H. Kim, J. Choi, Interfacial and mechanical properties of liquid crystalline elastomer nanocomposites with grafted au nanoparticles: a molecular dynamics study. Polymer 218(123), 525 (2021)

A. Kotikian, R.L. Truby, J.W. Boley et al., 3d printing of liquid crystal elastomeric actuators with spatially programed nematic order. Adv. Mater. 30(10), 1706164 (2018)

J. Küpfer, H. Finkelmann, Nematic liquid single crystal elastomers. Die Makromolekulare Chemie Rapid Commun. 12(12), 717–726 (1991)

W. Muschik, Overview of the mesoscopic theory of liquid crystals (Webpage of Prof. Dr. Wolfgang Muschik) (1997). https://www1.itp.tu-berlin.de/muschik/liquid_crystals/lc_intro.html. Accessed 2 Feb 2022

A. Lebar, G. Cordoyiannis, Z. Kutnjak, B. Zalar, The Isotropic-to-Nematic Conversion in Liquid Crystalline Elastomers. In: de Jeu, W. (eds) Liquid Crystal Elastomers: Materials and Applications. Advances in Polymer Science, Springer, Berlin, Heidelberg, 250, 147–185 (2010)

M.H. Li, P. Keller, Artificial muscles based on liquid crystal elastomers. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1847), 2763–2777 (2006)

Y. Lin, L. Jin, Y. Huo, Quasi-soft opto-mechanical behavior of photochromic liquid crystal elastomer: linearized stress-strain relations and finite element simulations. Int. J. Solids Struct. 49(18), 2668–2680 (2012). https://doi.org/10.1016/j.ijsolstr.2012.05.031

M.E. McConney, A. Martinez, V.P. Tondiglia et al., Topography from topology: photoinduced surface features generated in liquid crystal polymer networks. Adv. Mater. (Deerfield Beach, Fla) 25(41), 5880–5885 (2013). https://doi.org/10.1002/adma.201301891

K. Mehta, A.R. Peeketi, L. Liu et al., Design and applications of light responsive liquid crystal polymer thin films. Appl. Phys. Rev. 7(4), 041306 (2020)

B.T. Michal, B.M. McKenzie, S.E. Felder et al., Metallo-, thermo-, and photoresponsive shape memory and actuating liquid crystalline elastomers. Macromolecules 48(10), 3239–3246 (2015)

L.A. Mihai, A. Goriely, A plate theory for nematic liquid crystalline solids. J. Mech. Phys. Solids 144(104), 101 (2020). https://doi.org/10.1016/j.jmps.2020.104101

C.D. Modes, M. Warner, Responsive nematic solid shells: Topology, compatibility, and shape. EPL (Europhys. Lett.) 97(3), 36007 (2012). https://doi.org/10.1209/0295-5075/97/36007. http://stacks.iop.org/0295-5075/97/i=3/a=36007?key=crossref.0d40103ab3f847be708036665315aab4

C.D. Modes, K. Bhattacharya, M. Warner, Disclination-mediated thermo-optical response in nematic glass sheets. Phys. Rev. E 81(6), 060701 (2010). https://doi.org/10.1103/PhysRevE.81.060701

C.D. Modes, M. Warner, C. Sánchez-Somolinos et al., Mechanical frustration and spontaneous polygonal folding in active nematic sheets. Phys. Rev. E 86(6), 060701 (2012). https://doi.org/10.1103/PhysRevE.86.060701

J. Moon, H. Shin, K. Baek et al., Multiscale modeling of photomechanical behavior of photo-responsive nanocomposite with carbon nanotubes. Compos. Sci. Technol. 166, 27–35 (2018)

J. Moon, H. Chung, M. Cho, Combined coarse-grained molecular dynamics and finite-element study of light-activated deformation of photoresponsive polymers. Phys. Rev. E 103(1), 012703 (2021)

C. Mostajeran, M. Warner, T.H. Ware, et al., Encoding Gaussian curvature in glassy and elastomeric liquid crystal solids. Proc. R. Soc. A Math. Phys. Eng. Sci. 472(2189):20160112 (2016)

O. Nadgir, M. Rambausek, Keip Ma, Computational homogenization of nematic liquid crystal elastomers based on Landau–de-Gennes theory. PAMM 18(1), 685–686 (2018). https://doi.org/10.1002/pamm.201800318

M. Pezzulla, N. Stoop, M.P. Steranka et al., Curvature-induced instabilities of shells. Phys. Rev. Lett. 120(4), 048002 (2018)

P. Rastogi, J. Njuguna, B. Kandasubramanian, Exploration of elastomeric and polymeric liquid crystals with photothermal actuation: a review. Eur. Polym. J. 121(109), 287 (2019). https://doi.org/10.1016/J.EURPOLYMJ.2019.109287

M.O. Saed, C.P. Ambulo, H. Kim et al., Molecularly-engineered, 4d-printed liquid crystal elastomer actuators. Adv. Funct. Mater. 29(3), 1806412 (2019)

A. Sánchez-Ferrer, T. Fischl, M. Stubenrauch et al., Photo-crosslinked side-chain liquid-crystalline elastomers for microsystems. Macromol. Chem. Phys. 210(20), 1671–1677 (2009)

R. Sasaki, Y. Takahashi, Y. Hayashi et al., Atomistic mechanism of anisotropic heat conduction in the liquid crystal 4-heptyl-4-cyanobiphenyl: All-atom molecular dynamics. J. Phys. Chem. B 124, 881–889 (2020). https://doi.org/10.1021/acs.jpcb.9b08158

S. Serak, N. Tabiryan, R. Vergara et al., Liquid crystalline polymer cantilever oscillators fueled by light. Soft Matter 6(4), 779–783 (2010)

G. Skačej, C. Zannoni, Main-chain swollen liquid crystal elastomers: a molecular simulation study. Soft Matter 7(21), 9983–9991 (2011)

M. Soltani, K. Raahemifar, A. Nokhosteen et al., Numerical methods in studies of liquid crystal elastomers. Polymers (2021). https://doi.org/10.3390/polym13101650

L.M. Stimson, M.R. Wilson, Molecular dynamics simulations of side chain liquid crystal polymer molecules in isotropic and liquid-crystalline melts. J. Chem. Phys. 123(034), 908 (2005). https://doi.org/10.1063/1.1948376

K. Sunami, K. Imamura, T. Ouchi et al., Shape control of surface-stabilized disclination loops in nematic liquid crystals. Phys. Rev. E 97(2), 1–5 (2018). https://doi.org/10.1103/PhysRevE.97.020701

N. Torras, K.E. Zinoviev, J. Esteve et al., Liquid-crystalline elastomer micropillar array for haptic actuation. J. Mater. Chem. C 1(34), 5183–5190 (2013)

Z. Wang, Z. Wang, Y. Zheng et al., Three-dimensional printing of functionally graded liquid crystal elastomer. Sci. Adv. 6(39), eabc0034 (2020)

T.H. Ware, M.E. McConney, J.J. Wie et al., Voxelated liquid crystal elastomers. Science 347(6225), 982–984 (2015). https://doi.org/10.1126/science.1261019

M. Warner, E.M. Terentjev, Liquid Crystal Elastomers, vol. 120 (Oxford University Press, Oxford, 2007)

T.J. White, S.V. Serak, N.V. Tabiryan et al., Polarization-controlled, photodriven bending in monodomain liquid crystal elastomer cantilevers. J. Mater. Chem. 19(8), 1080 (2009). https://doi.org/10.1039/b818457g. http://pubs.rsc.org/en/Content/ArticleHTML/2009/JM/B818457G xlink.rsc.org/?DOI=b818457g

J.K. Whitmer, T.F. Roberts, R. Shekhar et al., Modeling the polydomain–monodomain transition of liquid crystal elastomers. Phys. Rev. E 87(2), 020502 (2013)

X. Xu, Y. Wu, L. Zuo et al., Topology optimization of multimaterial thermoelectric structures. J. Mech. Des. 143(1), 1–10 (2021). https://doi.org/10.1115/1.4047435. https://asmedigitalcollection.asme.org/mechanicaldesign/article/doi/10.1115/1.4047435/1084404/Topology-Optimization-of-Multimaterial

M. Yamada, M. Kondo, Mamiya Ji et al., Photomobile polymer materials: towards light-driven plastic motors. Angew. Chem. 120(27), 5064–5066 (2008)

Y. Yu, M. Nakano, T. Ikeda, Directed bending of a polymer film by light. Nature 425(6954), 145–145 (2003)

J.H. Yun, C. Li, H. Chung et al., Photo deformation in azobenzene liquid-crystal network: multiscale model prediction and its validation. Polymer 75, 51–56 (2015). https://doi.org/10.1016/j.polymer.2015.08.013

J.H. Yun, C. Li, H. Chung et al., Photo deformation in azobenzene liquid-crystal network: multiscale model prediction and its validation. Polymer 75, 51–56 (2015)

W. Zhu, M. Shelley, P. Palffy-Muhoray, Modeling and simulation of liquid-crystal elastomers. Phys. Rev. E 83(5), 051703 (2011). https://doi.org/10.1103/PhysRevE.83.051703