Multipurpose software-hardware systems for active electromagnetic testing as a trend

В. Н. Костин1, Ya. G. Smorodinskii1
1Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences, Yekaterinburg, 620990, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Sandomirskii, S.S., Maximum magnetic permeability of magnetically hard steel and the limiting hysteresis loop, Steel Transl., 2013, vol. 43, no. 8, pp. 530–534.

Vengrinovich, V.L., Vintov, D.A., and Dmitrovich, D.V., Non-destructive testing of biaxial stress state in ferromagnetic materials, Proc. 40th Annu. Rev. Prog. Quant. Nondestr. Eval., QNDE 2013, incorporating 10th Int. Conf. Barkhausen Micro-Magn., ICBM 2013, Baltimore: MD; United States, July 21–26, 2013, vol. 1581 33, pp. 1222–1228.

Ping Wang, Yunlai Gao, Gui Yun Tian, and Haitao Wang, Velocity effect analysis of dynamic magnetization in high speed magnetic flux leakage inspection, NDT & E Int., June 2014, vol. 64, pp. 7–12.

Reimund, V., Pelkner, M., Kreutzbruck, M., and Haueisen, J., Sensitivity analysis of the non-destructive evaluation of micro-cracks using GMR sensors, NDT & E Int., June 2014, vol. 64, pp. 21–29.

Rabung, M., Altpeter, I., Boller, C., Dobmann, G., and Herrmann, H.G., Nondestructive evaluation of the micro residual stresses of IIIrd order by using micro magnetic methods, NDT & E Int., April 2014, vol. 63, pp. 7–10.

Xuelin Dong, Xue Feng, and Keh-Chih Hwang, Magnetization in thin film inferred by full-field curvatures based on cantilever beam technique, NDT & E Int., April 2014, vol. 63, pp. 35–37.

Xiaoyu Luo, Yilin Wang, Bin Zhu, Yu Zhang, and Yisheng Zhang, Superresolution spectral analysis and signal reconstruction of magnetic Barkhausen noise, NDT & E Int., March 2015, vol. 70, pp. 16–21.

Hantscher, S., Zhou Ruixin, Seidl, A., Hinken, J., and Ziep, C., Simulation and measurement of ferromagnetic impurities in non-magnetic aeroengine turbine disks using fluxgate magnetometers, Case Stud. Nondestr. Test. Eval., November 2015, vol. 4, pp. 15–20.

Mel’gui, M.A., Multiparameter methods in magnetic structuroscopy and instruments for their realization (review): I. Multiparameter magnetic structuroscopy by using parameters of a hysteresis loop measured with a closed electromagnet-article magnetic circuit, Russ. J. Nondestr. Test., 2015, vol. 51, no. 2, pp. 79–85.

Mel’gui, M.A., Multiparameter methods in magnetic structuroscopy and instruments for their realization (Review): II. The pulsed magnetic multiparameter method and IMA-M instrument for its performance, Russ. J. Nondestr. Test., 2015, vol. 51, no. 3, pp. 138–145.

Dyakin, V.V., Kudryashova, O.V., and Raevskii, V.Ya., On the solution of the magnetostatic field problem in the case of magnetic permeability that is dependent on coordinates, Russ. J. Nondestr. Test., 2015, vol. 51, no. 9, pp. 554–562.

Gorkunov, E.S., Subachev, Yu.V., Povolotskaya, A.M., and Zadvorkin, S.M., The influence of a preliminary plastic deformation on the behavior of the magnetic characteristics of high-strength controllably rolled pipe steel under an elastic uniaxial tension (compression), Russ. J. Nondestr. Test., 2015, vol. 51, no. 9, pp. 563–572.

Nichipuruk, A.P., Stashkov, A.N., Ogneva, M.S., Korolev, A.V., and Osipov, A.A., Induced magnetic anisotropy in low-carbon steel plates subjected to plastic deformation by stretching, Russ. J. Nondestr. Test., 2015, vol. 51, no. 10, pp. 610–615.

Kostin, V.N., Vasilenko, O.N., Filatenkov, D.Yu., Chekasina, Yu.A., and Serbin, E.D., Magnetic and magnetoacoustic testing parameters of the stressed–strained state of carbon steels that were subjected to a cold plastic deformation and annealing, Russ. J. Nondestr. Test., 2015, vol. 51, no. 10, pp. 624–632.

Korkh, M.K., Rigmant, M.B., Davydov, D.I., Shishkin, D.A., Nichipuruk, A.P., and Korkh, Yu.V., Determination of the phase composition of three-phase chromium–nickel steels from their magnetic properties, Russ. J. Nondestr. Test., 2015, vol. 51, no. 12, pp. 727–737.

Bo Hu and Runqiao Yu, Variations in surface residual compressive stress and magnetic induction intensity of 304 stainless steel, NDT & E Int., June 2016, vol. 80, pp. 1–5.

Antipov, A.G. and Markov, A.A., A comparative analysis of the active and residual magnetization methods in the nondestructive testing of rails, Russ. J. Nondestr. Test., 2016, vol. 52, no. 3, pp. 155–160.

Shilov, A.V., Kushner, A.V., and Novikov, V.A., The detection of real defects in ferromagnetic objects using a magnetic-field imaging film, Russ. J. Nondestr. Test., 2016, vol. 52, no. 4, pp. 220–225.

Rosell, A. and Persson, G., Model based capability assessment of an automated eddy current inspection procedure on flat surfaces, Res. Nondestr. Eval., 2013, vol. 24, no. 3, pp. 154–176.

Xingle Chen and Yinzhao Lei, Time-domain analytical solutions to pulsed eddy current field excited by a probe coil outside a conducting ferromagnetic pipe, NDT & E Int., December 2014, vol. 68, pp. 22–27.

Xingle Chen and Yinzhao Lei, Excitation current waveform for eddy current testing on the thickness of ferromagnetic plates, NDT & E Int., September 2014, vol. 66, pp. 28–33.

Hughes, R., Fan, Y., and Dixon, S., Near electrical resonance signal enhancement (NERSE) in eddy-current crack detection, NDT & E Int., September 2014, vol. 66, pp. 82–89.

Jian Li, Xinjun Wu, Qing Zhang, and Pengfei Sun, Pulsed eddy current testing of ferromagnetic specimen based on variable pulse width excitation, NDT & E Int., January 2015, vol. 69, pp. 28–34.

Chen Huang and Xinjun Wu, An improved ferromagnetic material pulsed eddy current testing signal processing method based on numerical cumulative integration, NDT & E Int., January 2015, vol. 69, pp. 35–39.

Kryukov, A.S., Chegodaev, V.V., Zhdanov, A.G., and Lunin, V.P., A method for the determination of the volumes of arbitrarily-spaced local defects during eddy-current testing of cylindrical items by a multi-unit probe, Russ. J. Nondestr. Test., 2015, vol. 51, no. 12, pp. 750–758.

Noritaka Yusa, Weixi Chen, Jing Wang, and Hidetoshi Hashizume, Fabrication of imitative cracks by 3D printing for electromagnetic nondestructive testing and evaluations, Case Stud. Nondestr. Test. Eval., May 2016, vol. 5, pp. 9–14.

Desjardins, D., Krause, T.W., and Clapham, L., Transient eddy current method for the characterization of magnetic permeability and conductivity, NDT & E Int., June 2016, vol. 80, pp. 65–70.

Dmitriev, S.F., Katasonov, A.O., Malikov, V.N., and Sagalakov, A.M., Flaw detection of alloys using the eddycurrent method, Russ. J. Nondestr. Test., 2016, vol. 52, no. 1, pp. 32–37.

Kryukov, I.I., Shmelev, N.G., Levchenko, A.I., Rybnikov, A. I., Andreev, M. P., and Moshnikov, A. V., Integrated quality control of the rotor discs of gas turbines of gas-compressor units by eddy-current and dye penetrant nondestructive testing, Russ. J. Nondestr. Test., 2016, vol. 52, no. 2, pp. 102–111.

Pechenkov, A.N. and Shcherbinin, V.E., Eddy currents and conducting and magnetizable spherical inclusions fields in a nonmagnetic medium, Russ. J. Nondestr. Test., 2016, vol. 52, no. 4, pp. 226–234.

Bakunov, A.S. and Kaloshin, V.A., Development of eddy-current thickness testing of protective coatings, Kontrol’. Diagn., 2016, no. 1, pp. 27–31.

Mart’yanov, E.V., Arbuzov, E.V., Klimova, E.A., and Petrenko, E.O., Nondestructive testing of pipe rolled metal in near and far fields of eddy currents, Kontrol’. Diagn., 2016, no. 4, pp. 21–27.

Nerazrushayushchii kontrol’. Spravochnik v 8 t. (Nondestructive Testing. A Handbook in 8 Vols.), Klyuev, V.V., Ed., Moscow: Mashinostroenie, 2008}, 2nd Ed

Shchepbinin, V.E. and Gorkunov, E.S., Magnitnye metody strukturnogo analiza i nerazrushayushchego kontrolya (Magnetic Methods of Structural Analysis and Nondestructive Testing), Yekaterinburg: Ural Branch, Russ. Acad. Sci., 1996.

Bakunov, A.S., Gorkunov, E.S., and Shcherbinin, V.E., Magnitnyi kontrol’. Uch. posobie (Magnetic Testing. A Handbook), Klyuev, V.V., Ed., Moscow: Spektr, 2011.

Fedosenko, Yu.K., Shkatov, P.N., and Efimov, A.G., Vikhretokovyi kontrol’. Uch. posobie (Eddy-Current Testing. A Handbook), Klyuev, V.V., Ed., Moscow: Spektr, 2011.

Greshnikov, V.A. and Drobot, Yu.B., Akusticheskaya emissiya (Acoustic Emission), Moscow: Izd-vo Standartov, 1978.

Ivanova, I. and Partalin, T., Comparative measurements of the stress state in a rolled carbon steel using magnetic Barkhausen noise and ultrasonic method, Russ. J. Nondestr. Test., 2012, vol. 48, no. 2, pp. 137–146.

Piotrowski, L., Augustyniak, B., Chmielewski, M., Labanowski, J., and Lech-Grega, M., Study on the applicability of the measurements of magnetoelastic properties for a nondestructive evaluation of thermally induced microstructure changes in the P91 grade steel, NDT&E Int., 2012, vol. 47, pp. 157–162.

Piotrowski, L., Chmielewski, M., and Augustyniak, B., The influence of elastic deformation on the properties of the magnetoacoustic emission (MAE) signal for GO electrical steel, J. Magn. Magn. Mater., 2012, vol. 324, pp. 2496–2500.

Neyra Astudillo, M.R., Núñez, N., López Pumarega, M.I., Ruzzante, J., and Padovese, L., Magnetic Barkhausen noise and magneto acoustic emission in stainless steel plates, Procedia Mater. Sci., 2015, vol. 8, pp. 678–682.

Piotrowski, L., Chmielewski, M., and Augustyniak, B., On the correlation between magnetoacoustic emission and magnetostriction dependence on the applied magnetic field, J. Magn. Magn. Mater., 2016, vol. 410, pp. 34–40.

Reutov, Yu.Ya. and Litvinenko, A.A., Magnetic fields affecting people and other biological objects in modern cities, Ekol., 1987, no. 1, pp. 66–74.

Vlasov, V.T. and Dubov, A.A., Fizicheskie osnovy metoda magnitnoi pamyati metalla (Physical Foundations of Metal Magnetic Memory Method), Moscow: Tisso, 2004.

http://studopedia.su/19_42575_kontrol-napryazhenno-deformirovannogo-sostoyaniya-oborudovaniyai-konstruktsiy-pri-otsenke-ostatochnogo-resursa-na-ob-ektah-promishlennosti-i-transporta.html

Arkulis, M.B., Baryshnikov, M.P., Misheneva, N.I., and Savchenko, Yu.I., On problems of applicability of the metal magnetic-memory method in testing the stressed-deformed state of metallic constructions, Russ. J. Nondestr. Test., 2009, vol. 45, no. 8, pp. 526–528.

Gorkunov, E.S., Different remanence states and their resistance to external effects. Discussing the “method of magnetic memory”, Russ. J. Nondestr. Test., 2014, vol. 50, no. 11, pp. 617–633.

Gorkunov, E.S., Different remanence states and their resistance to external effects. Discussing the so-called magnetic memory method, Insight, 2015, vol. 57, no. 12, pp. 709–717.

Ignat’ev, V.K. and Orlov, A.A., Inverse magnetostatic problem for ferromagnets, Nauka Obraz.: Sci. Publ. Bauman State Tech. Univ., 2014, no. 1, pp. 300–324.

Kuznetsov, I.A., Magnitnyi strukturnyi analiz (Magnetic Structural Analysis), Sverdlovsk: Gorky Ural State Univ., 1984.

Mikheev, M.N. and Gorkunov, E.S., Magnitnye metody strukturnogo analiza i nerazrushayushchego kontrolya (Magnetic Methods of Structural Analysis and Nondestructive Testing), Moscow: Nauka, 1993.

Bida, G.V., Magnetic properties of a body as nondestructive testing parameters of tempering quality of quenched steels (a review), Russ. J. Nondestr. Test., 2002, vol. 38, no. 6, pp. 412–424.

Kostin, V.N., Osintsev, A.A., Stashkov, A.N., and Tsar’kova, T.P., Multiparameter methods for structural analysis of steel articles using the magnetic properties of substances, Russ. J. Nondestr. Test., 2004, vol. 40, no. 3, pp. 197–208.

Kostin, K.V., Kostin, V.N., Smorodinskii, Ya.G., Tsar’kova, T.P., Somova, V.M., and Sazhina, E.Yu., Choice of the parameters and algorithm for the magnetic hardness testing of thermally treated carbon steels by the method of regression modeling, Russ. J. Nondestr. Test., 2011, vol. 47, no. 2, pp. 89–95.

Kostin, V.N. and Vasilenko, O.N., Local measurement of the coercive-return induction in the presence of a gap in the transducer-object combined circuit, Russ. J. Nondestr. Test., 2012, vol. 48, no. 7, pp. 391–400.

Kostin, V.N. and Vasilenko, O.N., On new possibilities for making local measurements of the coercive force of ferromagnetic objects, Russ. J. Nondestr. Test., 2012, vol. 48, no. 7, pp. 401–410.

Draper, N.R. and Smith, H., Applied Regression Analysis, John Wiley & sons, Inc., 1998, 3rd Ed.

Klyuev, S.V. and Shkatov, P.N., Kombinirovannye metody vikhretokovogo, magnitnogo i elektropotentsial’nogo kontrolya. Uch. posobie (Combined Methods of Eddy-Current, Magnetic, and Electric-Potential Testing. A Handbook), Klyuev, V.V., Ed., Moscow: Spektr, 2011.

Chechernikov, V.I., Magnitnye izmereniya (Magnetic Measurements), Moscow: Moscow State Univ., 1969.

Kostin, V.N., Tsar’kova, T.P., and Sazhina, E.Yu., Measurements of relative magnetic parameters of materials in tested components incorporated in closed circuits, Russ. J. Nondestr. Test., 2001, vol. 37, no. 1, pp. 10–19.

Kostin, V.N., Osintsev, A.A., Stashkov, A.N., Nichipuruk, A.P., Kostin, K.V., and Sazhina, E.Yu., Portable instruments for multiparameter magnetic evaluation of material structures, Russ. J. Nondestr. Test., 2008, vol. 44, no. 4, pp. 280–289.

Kostin, V.N., Nichipuruk, A.P., Nikolaeva, L.A., Sokolova, S.V., Smorodinskii, Ya.G., and Vasilenko, O.N., Magnetic testing of hardness of cast railcar steel 32X06Л after quenching and high-temperature tempering, Russ. J. Nondestr. Test., 2016, vol. 52, no. 12, pp. 716–721.

Giarratano, J.C. and Riley, G.D., Expert Systems: Principles and Programming, Course Technology, 2004.