Multiproxy analysis of paleoenvironmental, paleoclimatic and paleoceanographic changes during the early Danian in the Caravaca section (Spain)

Palaeogeography, Palaeoclimatology, Palaeoecology - Tập 576 - Trang 110513 - 2021
Vicente Gilabert1, Ignacio Arenillas1, José A. Arz1, Sietske J. Batenburg2, Stuart A. Robinson3
1Departamento de Ciencias de la Tierra, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón, Universidad de Zaragoza, E-50009 Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
2Departament de Dinàmica de la Terra i de l'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, Martí i Franqués, 08028 Barcelona, Spain
3Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK

Tài liệu tham khảo

Abramovich, 2011, Maastrichtian Planktic Foraminiferal Biostratigraphy and Paleoenvironment of Brazos River, Falls County, Texas, U.S.A, 123 Alegret, 2003, Benthic foraminiferal turnover across the Cretaceous/Paleogene boundary at Agost (southeastern Spain): Paleoenvironmental inferences, Mar. Micropaleontol., 48, 251, 10.1016/S0377-8398(03)00022-7 Alegret, 2013, Benthic foraminifera across the Cretaceous/Paleogene boundary in the Southern Ocean (ODP Site 690): Diversity, food and carbonate saturation, Mar. Micropaleontol., 105, 40, 10.1016/j.marmicro.2013.10.003 Alegret, 2012, End-Cretaceous marine mass extinction not caused by productivity collapse, Proc. Natl. Acad. Sci. U. S. A., 109, 728, 10.1073/pnas.1110601109 Alvarez, 1980, Extraterrestrial cause for the Cretaceous-Tertiary extinction, Science, 208, 1095, 10.1126/science.208.4448.1095 Andeweg, 2002 Arenillas, 2017, Benthic origin and earliest evolution of the first planktonic foraminifera after the Cretaceous/Palaeogene boundary mass extinction, Hist. Biol., 29, 25, 10.1080/08912963.2015.1119133 Arenillas, 1998, El límite Cretácico/Terciario de Zumaya, Osinaga y Músquiz (Pirineos): control bioestratigráfico y cuantitativo de hiatos con foraminíferos planctónicos, Rev. Soc. Geol. Esp., 11, 127 Arenillas, 2000, The Cretaceous/Paleogene (K/P) boundary at Aïn Settara, Tunisia: Sudden catastrophic mass extinction in planktic foraminifera, J. Foraminifer. Res., 30, 202, 10.2113/0300202 Arenillas, 2000, An independent test of planktic foraminiferal turnover across the Cretaceous/Paleogene (K/P) boundary at El Kef, Tunisia: Catastrophic mass extinction and possible survivorship, Micropaleontology, 46, 31 Arenillas, 2004, A new high-resolution planktic foraminiferal zonation and subzonation for the lower Danian, Lethaia, 37, 79, 10.1080/00241160310005097 Arenillas, 2016, The Chicxulub impact is synchronous with the planktonic foraminifera mass extinction at the Cretaceous/Paleogene boundary: New evidence from the Moncada section, Cuba. Geol. Acta, 14, 35 Arenillas, 2006, Chicxulub impact event is Cretaceous/Paleogene boundary in age: New micropaleontological evidence, Earth Planet. Sci. Lett., 249, 241, 10.1016/j.epsl.2006.07.020 Arenillas, 2018, Blooms of aberrant planktic foraminifera across the K/Pg boundary in the Western Tethys: Causes and evolutionary implications, Paleobiology, 44, 460, 10.1017/pab.2018.16 Arz, 2000, La estabilidad evolutiva de los foraminíferos planctónicos en el Maastrichtiense superior y su extinción en el límite Cretácico/Terciario de Caravaca, España, Rev. geol. Chile, 27, 27, 10.4067/S0716-02082000000100003 Arz, 2001, Extinción de foraminíferos del límite Cretácico/Terciario en Coxquihui (México) y su relación con las evidencias de impacto, Rev. Esp. Micropaleontol., 33, 221 Ashckenazi-Polivoda, 2014, Paleoecology of the K-Pg mass extinction survivor Guembelitria (Cushman): isotopic evidence from pristine foraminifera from Brazos River, Texas (Maastrichtian), Paleobiology, 40, 24, 10.1666/13317 Aze, 2011, A phylogeny of Cenozoic macroperforate planktonic foraminifera from fossil data, Biol. Rev., 86, 900, 10.1111/j.1469-185X.2011.00178.x Baksi, 2001, The Rajahmundry Traps, Andhra Pradesh: Evaluation of their petrogenesis relative to the Deccan Traps, Proc. Indian Acad. Sci. Earth Planet. Sci., 110, 397, 10.1007/BF02702903 Ballent, 2008, Morphological abnormalities in late Cretaceous and early Paleocene foraminifer tests (northern Patagonia, Argentina), Mar. Micropaleontol., 67, 288, 10.1016/j.marmicro.2008.02.003 Barnet, 2018, A new high-resolution chronology for the late Maastrichtian warming event: establishing robust temporal links with the onset of Deccan volcanism, Geology, 46, 147, 10.1130/G39771.1 Barnet, 2019, A High-Fidelity Benthic Stable Isotope Record of late Cretaceous-early Eocene climate Change and Carbon-Cycling, Paleoceanogr. Paleoclimatology, 34, 672, 10.1029/2019PA003556 Beals, 1984, Bray-Curtis ordination: an effective strategy for analysis of multivariate ecological data, Adv. Ecol. Res., 14, 1, 10.1016/S0065-2504(08)60168-3 Berger, 1982, Foraminifera on the deep-sea floor: lysocline and dissolution rate, Oceanol. Acta, 5, 249 Berggren, 2005, A revised tropical to subtropical Paleogene planktonic foraminiferal zonation, J. Foraminifer. Res., 35, 279, 10.2113/35.4.279 Birch, 2012, Evolutionary ecology of early Paleocene planktonic foraminifera: size, depth habitat and symbiosis, Paleobiology, 38, 374, 10.1666/11027.1 Birch, 2016, Partial collapse of the marine carbon pump after the Cretaceous-Paleogene boundary, Geology, 44, 287, 10.1130/G37581.1 Boersma, 1989, Atlantic Paleogene biserial heterohelicid foraminifera and oxygen minima, Paleoceanography, 4, 271, 10.1029/PA004i003p00271 Bown, 2005, Selective calcareous nannoplankton survivorship at the Cretaceous-Tertiary boundary, Geology, 33, 653, 10.1130/G21566AR.1 Bralower, 2020, Origin of a global carbonate layer deposited in the aftermath of the Cretaceous-Paleogene boundary impact, Earth Planet. Sci. Lett., 548, 116476, 10.1016/j.epsl.2020.116476 Bukry, 1974, Coccoliths as paleosalinity indicators - evidence from Black Sea, 353 Burgess, 2019, Deciphering mass extinction triggers, Science, 363, 815, 10.1126/science.aaw0473 Caldeira, 1990, Biogeochemical modeling at mass extinction boundaries: Atmospheric carbon dioxide and ocean alkalinity at the K/T boundary, 30, 333 Canudo, 1991, Cretaceous/Tertiary boundary extinction pattern and faunal turnover at Agost and Caravaca, S.E. Spain, Mar. Micropaleontol., 17, 319, 10.1016/0377-8398(91)90019-3 Chenet, 2007, 40K-40Ar dating of the Main Deccan large igneous province: further evidence of KTB age and short duration, Earth Planet. Sci. Lett., 263, 1, 10.1016/j.epsl.2007.07.011 Chiarenza, 2020, Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction, Proc. Natl. Acad. Sci. U. S. A., 117, 17084, 10.1073/pnas.2006087117 Clyde, 2016, Direct high-precision U-Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales, Earth Planet. Sci. Lett., 452, 272, 10.1016/j.epsl.2016.07.041 Coccioni, 1994, K-T boundary extinction: Geologically instantaneous or gradual event? Evidence from deep-sea benthic foraminifera, Geology, 22, 779, 10.1130/0091-7613(1994)022<0779:KTBEGI>2.3.CO;2 Coccioni, 2006, Guembelitria irregularis bloom at the K-T boundary: Morphological abnormalities induced by impact-related extreme environmental stress?, 179 Coccioni, 2010, The Dan-C2 hyperthermal event at Gubbio (Italy): Global implications, environmental effects, and cause(s), Earth Planet. Sci. Lett., 297, 298, 10.1016/j.epsl.2010.06.031 Courtillot, 2014, A review of the embedded time scales of flood basalt volcanism with special emphasis on dramatically short magmatic pulses, vol. 505, 301 Courtillot, 1986, Deccan flood basalts at the Cretaceous/Tertiary boundary?, Earth Planet. Sci. Lett., 80, 361, 10.1016/0012-821X(86)90118-4 Coxall, 2006, Pelagic evolution and environmental recovery after the Cretaceous-Paleogene mass extinction, Geology, 34, 297, 10.1130/G21702.1 Cunha, 1997, Braarudosphaera blooms and anomalous enrichments of Nannoconus: evidence from the Turonian South Atlantic, Santos Basin, Brazil, J. Nannoplankt. Res., 19, 51, 10.58998/jnr2217 D’Hondt, 1998, Organic carbon fluxes and ecological recovery from the Cretaceous-Tertiary mass extinction, Science, 282, 276, 10.1126/science.282.5387.276 Ellwood, 2008, High-resolution magnetic susceptibility and geochemistry for the Cenomanian/Turonian boundary GSSP with correlation to time equivalent core, Palaeogeogr. Palaeoclimatol. Palaeoecol., 261, 105, 10.1016/j.palaeo.2008.01.005 Fendley, 2020, No Cretaceous-Paleogene boundary in exposed Rajahmundry Traps: a refined chronology of the longest Deccan lava flows from 40Ar/39Ar dates, magnetostratigraphy, and biostratigraphy. Geochemistry, Geophys, Geosystems, 21, 1 Font, 2016, Mercury anomaly, Deccan volcanism, and the end-Cretaceous mass extinction, Geology, 44, 171, 10.1130/G37451.1 Font, 2018, Deccan volcanism induced high-stress environment during the Cretaceous–Paleogene transition at Zumaia, Spain: evidence from magnetic, mineralogical and biostratigraphic records, Earth Planet. Sci. Lett., 484, 53, 10.1016/j.epsl.2017.11.055 Fornaciari, 2007, An expanded Cretaceous-Tertiary transition in a pelagic setting of the Southern Alps (central-western Tethys), Palaeogeogr. Palaeoclimatol. Palaeoecol., 255, 98, 10.1016/j.palaeo.2007.02.044 Gallala, 2009, Catastrophic mass extinction and assemblage evolution in planktic foraminifera across the Cretaceous/Paleogene (K/Pg) boundary at Bidart (SW France), Mar. Micropaleontol., 72, 196, 10.1016/j.marmicro.2009.05.001 Gardin, 2002, Late Maastrichtian to early Danian calcareous nannofossils at Elles (Northwest Tunisia). A tale of one million years across the K-T boundary, Palaeogeogr. Palaeoclimatol. Palaeoecol., 178, 211, 10.1016/S0031-0182(01)00397-2 Gardin, 1998, Palaeoecological change in middle to low latitude calcareous nannoplankton at the Cretaceous/Tertiary boundary, Bull. Soc. géol. Fr., 169, 709 Gerstel, 1986, The Cretaceous/Tertiary boundary event in the North Pacific: Planktonic foraminiferal results from Deep Sea Drilling Project Site 577, Shatsky rise, Paleoceanography, 1, 97, 10.1029/PA001i002p00097 Gertsch, 2011, Environmental effects of Deccan volcanism across the Cretaceous-Tertiary transition in Meghalaya, India, Earth Planet. Sci. Lett., 310, 272, 10.1016/j.epsl.2011.08.015 Gibbs, 2020, Algal plankton turn to hunting to survive and recover from end-Cretaceous impact darkness, Sci. Adv., 6, eabc9123, 10.1126/sciadv.abc9123 Gilabert, 2021, Influence of the latest Maastrichtian Warming Event on planktic foraminiferal assemblages and ocean carbonate saturation at Caravaca, Spain, Cretac. Res., 125, 104844, 10.1016/j.cretres.2021.104844 Groot, 1989, Magnetostratigraphy of the Cretaceous-Tertiary boundary at Agost (Spain), Earth Planet. Sci. Lett., 94, 385, 10.1016/0012-821X(89)90155-6 Gulick, 2019, The first day of the Cenozoic, Proc. Natl. Acad. Sci. U. S. A., 116, 19342, 10.1073/pnas.1909479116 Hammer, 2001, PAST: Paleontological statistics software package for education and data analysis, Paleontol. Electron., 4, 9 Henehan, 2016, Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study, Philos. Trans. R. Soc. B Biol. Sci., 371, 10.1098/rstb.2015.0510 Henehan, 2019, Rapid Ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact, Proc. Natl. Acad. Sci. U. S. A., 116, 22500, 10.1073/pnas.1905989116 Hernandez Nava, 2021, Reconciling early Deccan Traps CO2 outgassing and pre-KPB global climate, Proc. Natl. Acad. Sci. U. S. A., 118, 10.1073/pnas.2007797118 Hildebrand, 1991, Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan peninsula, Mexico, Geology, 19, 867, 10.1130/0091-7613(1991)019<0867:CCAPCT>2.3.CO;2 Huber, 2002, Abrupt extinction and subsequent reworking of Cretaceous planktonic foraminifera across the Cretaceous-Tertiary boundary: evidence from the subtropical North Atlantic, Geol. Soc. Am. Spec. Pap., 356, 277 Hull, 2020, On impact and volcanism across the Cretaceous-Paleogene boundary, Science, 367, 266, 10.1126/science.aay5055 Jay, 2008, Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: Implications for eruptive extent and volumes, J. Geol. Soc. Lond., 165, 177, 10.1144/0016-76492006-062 Jiang, 2010, Geographic controls on nannoplankton extinction across the Cretaceous/Palaeogene boundary, Nat. Geosci., 3, 280, 10.1038/ngeo775 Jiang, 2019, Environmental controls on calcareous nannoplankton response to the Cretaceous/Paleogene mass extinction in the Tethys realm, Palaeogeogr. Palaeoclimatol. Palaeoecol., 515, 134, 10.1016/j.palaeo.2017.12.044 Jones, 2019, Delayed calcareous nannoplankton boom-bust successions in the earliest Paleocene Chicxulub (Mexico) impact crater, Geology, 47, 753, 10.1130/G46143.1 Kaiho, 1999, Catastrophic extinction of planktonic foraminifera at the Cretaceous-Tertiary boundary evidenced by stable isotopes and foraminiferal abundance at Caravaca, Spain, Geology, 27, 355, 10.1130/0091-7613(1999)027<0355:CEOPFA>2.3.CO;2 Kaiho, 1999, Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: their decrease, subsequent warming, and recovery, Paleoceanography, 14, 511, 10.1029/1999PA900022 Kasbohm, 2021, Radiometric constraints on the timing, tempo, and effects of large igneous province emplacement, 27 Kawaragi, 2009, Direct measurements of chemical composition of shock-induced gases from calcite: an intense global warming after the Chicxulub impact due to the indirect greenhouse effect of carbon monoxide, Earth Planet. Sci. Lett., 282, 56, 10.1016/j.epsl.2009.02.037 Keller, 2003, Guembelitria dominated late Maastrichtian planktic foraminiferal assemblages mimic early Danian in Central Egypt, Mar. Micropaleontol., 47, 71, 10.1016/S0377-8398(02)00116-0 Keller, 2004, Disaster opportunists Guembelitrinidae: Index for environmental catastrophes, Mar. Micropaleontol., 53, 83, 10.1016/j.marmicro.2004.04.012 Keller, 2008, Main Deccan volcanism phase ends near the K-T boundary: evidence from the Krishna-Godavari Basin, SE India, Earth Planet. Sci. Lett., 268, 293, 10.1016/j.epsl.2008.01.015 Keller, 2011, Deccan volcanism linked to the Cretaceous-Tertiary boundary mass extinction: New evidence from ONGC wells in the Krishna-Godavari Basin, J. Geol. Soc. India, 78, 399, 10.1007/s12594-011-0107-3 Keller, 2012, Nature and timing of extinctions in Cretaceous-Tertiary planktic foraminifera preserved in Deccan intertrappean sediments of the Krishna-Godavari Basin, India. Earth Planet. Sci. Lett., 341-344, 211, 10.1016/j.epsl.2012.06.021 Keller, 2016, Upheavals during the late Maastrichtian: Volcanism, climate and faunal events preceding the end-Cretaceous mass extinction, Palaeogeogr. Palaeoclimatol. Palaeoecol., 441, 137, 10.1016/j.palaeo.2015.06.034 Keller, 2020, Mercury linked to Deccan Traps volcanism, climate change and the end-Cretaceous mass extinction, Glob. Planet. Change, 194, 103312, 10.1016/j.gloplacha.2020.103312 Kelly, 2003, Deciphering the paleoceanographic significance of early Oligocene Braarudosphaera chalks in the South Atlantic, Mar. Micropaleontol., 49, 49, 10.1016/S0377-8398(03)00027-6 Krahl, 2020, Environmental changes occurred during the early Danian at the Rio Grande rise, South Atlantic Ocean, Glob. Planet. Change, 191, 103197, 10.1016/j.gloplacha.2020.103197 Kring, 2007, The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary, Palaeogeogr. Palaeoclimatol. Palaeoecol., 255, 4, 10.1016/j.palaeo.2007.02.037 Kroon, 1990, Ecology and paleoecology of triserial planktic foraminifera, Mar. Micropaleontol., 16, 25, 10.1016/0377-8398(90)90027-J Kucera, 1997, Foraminiferal dissolution at shallow depths of the Walvis Ridge and Rio Grande rise during the latest Cretaceous: Inferences for deep-water circulation in the South Atlantic, Palaeogeogr. Palaeoclimatol. Palaeoecol., 129, 195, 10.1016/S0031-0182(96)00133-2 Lamolda, 2005, Nannofloral extinction and survivorship across the K/T boundary at Caravaca, southeastern Spain, Palaeogeogr. Palaeoclimatol. Palaeoecol., 224, 27, 10.1016/j.palaeo.2005.03.030 Lamolda, 2016, Calcareous nannoplankton assemblage changes linked to paleoenvironmental deterioration and recovery across the Cretaceous-Paleogene boundary in the Betic Cordillera (Agost, Spain), Palaeogeogr. Palaeoclimatol. Palaeoecol., 441, 438, 10.1016/j.palaeo.2015.10.003 Legendre, 2001, Ecologically meaningful transformations for ordination of species data, Oecologia, 129, 271, 10.1007/s004420100716 Lowery, 2019, Morphospace expansion paces taxonomic diversification after end Cretaceous mass extinction, Nat. Ecol. Evol., 3, 900, 10.1038/s41559-019-0835-0 Lowery, 2018, Rapid recovery of life at ground zero of the end-Cretaceous mass extinction, Nature, 558, 288, 10.1038/s41586-018-0163-6 Lowery, 2020, Ecological Response of Plankton to Environmental Change: Thresholds for Extinction, Annu. Rev. Earth Planet. Sci., 48, 10.1146/annurev-earth-081619-052818 Luciani, 2020, Which was the habitat of early Eocene planktic foraminifer Chiloguembelina? Stable isotope paleobiology from the Atlantic Ocean and implication for paleoceanographic reconstructions, Glob. Planet. Change, 191, 103216, 10.1016/j.gloplacha.2020.103216 Lyson, 2019, Exceptional continental record of biotic recovery after the Cretaceous−Paleogene mass extinction, Science, 366, 977, 10.1126/science.aay2268 Mateo, 2016, Mass wasting and hiatuses during the Cretaceous-Tertiary transition in the North Atlantic: Relationship to the Chicxulub impact?, Palaeogeogr. Palaeoclimatol. Palaeoecol., 441, 96, 10.1016/j.palaeo.2015.01.019 Metsana-Oussaid, 2019, New sections of the Cretaceous-Paleogene transition in the southwestern Tethys (Médéa, northern Algeria): planktic foraminiferal biostratigraphy and biochronology, Arab. J. Geosci., 12, 10.1007/s12517-019-4402-4 Minoletti, 2005, Changes in the pelagic fine fraction carbonate sedimentation during the Cretaceous-Paleocene transition: Contribution of the separation technique to the study of Bidart section, Palaeogeogr. Palaeoclimatol. Palaeoecol., 216, 119, 10.1016/j.palaeo.2004.10.006 Molina, 1998, Mass extinction in planktic foraminifera at the Cretaceous/Tertiary boundary in subtropical and temperate latitudes, Bull. Soc. géol. Fr., 169, 351 Molina, 2009, The Global Boundary Stratotype Section and Point for the base of the Danian Stage (Paleocene, Paleogene, “Tertiary”, Cenozoic): Auxiliary sections and correlation, Episodes, 32, 84, 10.18814/epiiugs/2009/v32i2/002 Mukhopadhyay, 2001, A short duration of the Cretaceous-Tertiary boundary event: evidence from extraterrestrial Helium3, Science, 291, 1952, 10.1126/science.291.5510.1952 Norris, 1996, Symbiosis as an evolutionary innovation in the radiation of Paleocene planktic foraminifera, Paleobiology, 22, 461, 10.1017/S0094837300016468 Olsson, 1999, Atlas of Paleocene Planktonic Foraminifera, Smithson. Contrib. Paleobiol., 85, 1, 10.5479/si.00810266.85.1 Omaña, 2012, Morphological abnormalities and dwarfism in Maastrichtian foraminifera from the Cárdenas Formation, Valles-San Luis Potosí Platform, Mexico: Evidence of paleoenvironmental stress, Bol. Soc. Geol. Mex., 64, 305, 10.18268/BSGM2012v64n3a4 Pardo, 2008, Biotic effects of environmental catastrophes at the end of the Cretaceous and early Tertiary: Guembelitria and Heterohelix blooms, Cretac. Res., 29, 1058, 10.1016/j.cretres.2008.05.031 Pospichal, 1996, Calcareous nannoplankton mass extinction at the Cretaceous/Tertiary boundary: an update, Geol. Soc. Am. Spec. Pap., 307, 335 Premović, 2009, Experimental evidence for the global acidification of surface ocean at the Cretaceous-Palaeogene boundary: the biogenic calcite-poor spherule layers, Int. J. Astrobiol., 8, 193, 10.1017/S1473550409990139 Punekar, 2014, Effects of Deccan volcanism on paleoenvironment and planktic foraminifera: a global survey, Spec. Geol. Soc. Am. Spec. Pap., 505, 91 Punekar, 2014, Late Maastrichtian-early Danian high-stress environments and delayed recovery linked to Deccan volcanism, Cretac. Res., 49, 63, 10.1016/j.cretres.2014.01.002 Punekar, 2016, A multi-proxy approach to decode the end-Cretaceous mass extinction, Palaeogeogr. Palaeoclimatol. Palaeoecol., 441, 116, 10.1016/j.palaeo.2015.08.025 Quillévéré, 2008, Transient Ocean warming and shifts in carbon reservoirs during the early Danian, Earth Planet. Sci. Lett., 265, 600, 10.1016/j.epsl.2007.10.040 Renne, 2015, State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact, Science, 350, 76, 10.1126/science.aac7549 Renne, 2018, Multi-proxy record of the Chicxulub impact at the Cretaceous- Paleogene boundary from Gorgonilla Island, Colombia, Geology, 46, 547, 10.1130/G40224.1 Richards, 2015, Triggering of the largest Deccan eruptions by the Chicxulub impact, Bull. Geol. Soc. Am., 127, 1507, 10.1130/B31167.1 Ricotta, 2017, On some properties of the Bray-Curtis dissimilarity and their ecological meaning, Ecol. Complex., 31, 201, 10.1016/j.ecocom.2017.07.003 Robinson, 2009, A high-resolution marine 187Os/188Os record for the late Maastrichtian: Distinguishing the chemical fingerprints of Deccan volcanism and the K-P impact event, Earth Planet. Sci. Lett., 281, 159, 10.1016/j.epsl.2009.02.019 Romein, 1977, Calcareous nannofossils from the Cretaceous/Tertiary boundary interval in the Barranco del Gredero (Caravaca, Prov. Murcia, SE Spain), Proc. K. Ned. Akad. Wet. Ser. B, 80, 256 Schmidt, 2016, Selective environmental stress from Sulphur emitted by continental flood basalt eruptions, Nat. Geosci., 9, 77, 10.1038/ngeo2588 Schoene, 2015, U-Pb geochronology of the Deccan Traps and relation to the end-Cretaceous mass extinction, Science, 347, 182, 10.1126/science.aaa0118 Schoene, 2019, U-Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction, Science, 363, 862, 10.1126/science.aau2422 Schoene, 2021, An evaluation of deccan traps eruption rates using geochronologic data, Geochronology, 3, 181, 10.5194/gchron-3-181-2021 Schulte, 2010, The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary, Science, 327, 1214, 10.1126/science.1177265 Self, 2006, Volatile fluxes during flood basalt eruptions and potential effects on the global environment: a Deccan perspective, Earth Planet. Sci. Lett., 248, 518, 10.1016/j.epsl.2006.05.041 Self, 2008, Correlation of the Deccan and Rajahmundry Trap lavas: are these the longest and largest lava flows on Earth?, J. Volcanol. Geotherm. Res., 172, 3, 10.1016/j.jvolgeores.2006.11.012 Sepúlveda, 2009, Rapid resurgence of marine productivity after the Cretaceous-Paleogene mass extinction, Science, 326, 129, 10.1126/science.1176233 Sepúlveda, 2019, Stable Isotope Constraints on Marine Productivity across the Cretaceous-Paleogene Mass Extinction, Paleoceanogr. Paleoclimatology, 34, 1195, 10.1029/2018PA003442 Sinnesael, 2019, Multiproxy Cretaceous-Paleogene boundary event stratigraphy: an Umbria-Marche basinwide perspective, Geol. Soc. Am. Spec. Pap., 542, 133 Smit, 1982, Extinction and evolution of planktonic foraminifera after a major impact at the Cretaceous/Tertiary boundary, Geol. Soc. Am. Spec. Pap., 190, 329 Smit, 1999, The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta, Annu. Rev. Earth Planet. Sci., 27, 75, 10.1146/annurev.earth.27.1.75 Smit, 2004, The section of the Barranco del Gredero (Caravaca, SE Spain): a crucial section for the Cretaceous/Tertiary boundary impact extinction hypothesis, J. Iber. Geol., 31, 179 Smit, 1980, An extraterrestrial event at the Cretaceous-Tertiary boundary, Nature, 285, 198, 10.1038/285198a0 Smit, 1985, A sequence of events across the Cretaceous-Tertiary boundary, Earth Planet. Sci. Lett., 74, 155, 10.1016/0012-821X(85)90019-6 Sosa-Montes de Oca, 2016, Geochemical and isotopic characterization of trace fossil infillings: New insights on tracemaker activity after the K/Pg impact event, Cretac. Res., 57, 391, 10.1016/j.cretres.2015.03.003 Sprain, 2018, Calibration of chron C29r: New high-precision geochronologic and paleomagnetic constraints from the Hell Creek region, Montana. Bull. Geol. Soc. Am., 130, 1615, 10.1130/B31890.1 Sprain, 2019, The eruptive tempo of Deccan volcanism in relation to the Cretaceous-Paleogene boundary, Science., 363, 866, 10.1126/science.aav1446 Stax, 1993, Long-term changes in the accumulation of organic carbon in Neogene sediments, Ontong Java Plateau, Proc., Sci. Results, ODP, Leg, 130, 573 Steinthorsdottir, 2016, Global trends of pCO2 across the Cretaceous-Paleogene boundary supported by the first Southern Hemisphere stomatal proxy-based pCO2 reconstruction, Palaeogeogr. Palaeoclimatol. Palaeoecol., 464, 143, 10.1016/j.palaeo.2016.04.033 Thibault, 2010, The calcareous nannofossil response to the end-Cretaceous warm event in the Tropical Pacific, Palaeogeogr. Palaeoclimatol. Palaeoecol., 291, 239, 10.1016/j.palaeo.2010.02.036 Thibault, 2016, The end-Cretaceous in the southwestern Tethys (Elles, Tunisia): orbital calibration of paleoenvironmental events before the mass extinction, Int. J. Earth Sci., 105, 771, 10.1007/s00531-015-1192-0 Thibault, 2018, Offsets in the early Danian recovery phase in carbon isotopes: evidence from the biometrics and phylogeny of the Cruciplacolithus lineage, Rev. Micropaleontol., 61, 207, 10.1016/j.revmic.2018.09.002 Tobin, 2017, Modeling climatic effects of carbon dioxide emissions from Deccan Traps volcanic eruptions around the Cretaceous-Paleogene boundary, Palaeogeogr. Palaeoclimatol. Palaeoecol., 478, 139, 10.1016/j.palaeo.2016.05.028 Vandamme, 1991, Paleomagnetism and age determinations of the Deccan traps (India): results of a Nagpur–Bombay traverse and review of earlier work, Rev. Geophys. Space Phys., 29, 159, 10.1029/91RG00218 Vellekoop, 2014, Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary, Proc. Natl. Acad. Sci. U. S. A., 111, 7537, 10.1073/pnas.1319253111 Vellekoop, 2016, Evidence for Cretaceous-Paleogene boundary bolide “impact winter” conditions from New Jersey, USA, Geology, 44, 10.1130/G37961.1 Vellekoop, 2018, Shelf hypoxia in response to global warming after the Cretaceous-Paleogene boundary impact, Geology, 46, 683, 10.1130/G45000.1 Wade, 2011, Review and revision of Cenozoic tropical planktonic foraminiferal biostratigraphy and calibration to the geomagnetic polarity and astronomical time scale, Earth-Science Rev., 104, 111, 10.1016/j.earscirev.2010.09.003