Multipliers of double Fourier–Haar series

Advances in Operator Theory - Tập 6 - Trang 1-22 - 2021
N. T. Tleukhanova1, E. D. Nursultanov2,3,4, A. N. Bashirova1
1L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan
2M.V. Lomonosov Moscow State University, Kazakhstan Branch, Nur-Sultan, Kazakhstan
3Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
4RUDN University, Moscow, Russia

Tóm tắt

The multipliers of double Fourier–Haar series for functions from anisotropic Lorentz spaces are investigated. Necessary and sufficient conditions are obtained for the sequence $$\lambda =\{\lambda _{k_1k_2}^{j_1j_2}\}$$ to belong to the class $$m(L_{\bar{p},\bar{r}}\rightarrow L_{\bar{q},\bar{s}})$$ . In particular, the case is described when $$\bar{s}<\bar{r}$$ , which is a new result in the one-dimensional case as well.

Tài liệu tham khảo

Akylzhanov, R., Nursultanov, E., Ruzhansky, M.: Hardy–Littlewood–Paley inequalities and Fourier multipliers on SU(2). Stud. Math. 234(1), 1–29 (2016) Akylzhanov, R., Ruzhansky, M.: Net spaces on lattices, Hardy–Littlewood type unequalities, and their converses. Eur. Math. J. 8(3), 10–27 (2017) Akylzhanov, R., Ruzhansky, M., Nursultanov, E.: Hardy–Littlewood, Hausdorff–Young–Paley inequalities, and \(L_p\rightarrow L_q\) Fourier multipliers on compact homogeneous manifolds. J. Math. Anal. Appl. 479(2), 1519–1548 (2019) Bashirova, A.N., Kalidolday, A.H., Nursultanov, E.D.: Interpolation theorem for anisotropic net spaces. arXiv:2009.00609 (2020) Bashirova, A.N., Nursultanov, E.D.: The Hardy–Littlewood theorem for double Fourier–Haar series from Lebesgue spaces \(L_{\bar{p}}[0,1]\) with mixed metric and from net spaces \(N_{\bar{p}, \bar{q}}(M)\). arXiv:2009.01105 (2020) Bekmaganbetov, K.A.: Interpolation theorem for \(l^\sigma _q(L_{p\tau })\)\(L_{p\tau }(l^\sigma _q)\) spaces. Bulletin of the Kazakh National University. Series mathematics, mechanics, computer science. 56(1), 30–42 (2008) Bekmaganbetov, K.A., Nursultanov, E.D.: Embedding theorems for anisotropic Besov spaces \(B_{\bar{p},\bar{r}}^{\bar{\alpha },\bar{q}}\left([0,2\pi )^n\right)\). Izv. Math. 73(4), 655–668 (2009) Bryskin, I.B., Lelond, O.V., Semenov, E.M.: Multipliers of the Fourier–Haar series. Sib. Math. J. 41(4), 626–633 (2000) Burkholder, D.L.: A nonlinear partial differential equation and unconditional constant of the Haar system in \(L_p\). Bull. Am. Math. Soc. 7, 591–595 (1982) Fernandez, D.L.: Lorentz spaces with mixed norms. J. Funct. Anal. 25(2), 128–146 (1977) Fernandez, D.L.: Interpolation of \(2^n\) Banach spaces. Stud. Math. (PRL) 65(2), 175–201 (1979) Fernandez, D.L.: Interpolation of \(2^n\) Banach space and the Calderon spaces. Proc. Lond. Math. Soc. 5(6), 143–162 (1988) Girardi, M.: Operator-valued Fourier Haar multipliers. J. Math. Anal. Appl. 325, 1314–1326 (2007) Kashin, B.S., Saakyan, A.A.: Orthogonal Series, p. 496. Nauka, Moscow (1984) Lelond, O.V., Semenov, E.M., Uksusov, S.N.: The space of Fourier–Haar multipliers. Sib. Math. J. 46(1), 103–110 (2005) Lizorkin, P.I.: Multipliers of Fourier integrals in the spaces \(L_{p,\theta }\) (Russian). Trudy Mat. Inst. Steklov 89, 231–248 (1967) Lizorkin, P.I.: On the theory of Fourier multipliers. Proc. Steklov Inst. Math. 173, 161–176 (1987) Marcinkiewicz, J., Zygmund, A.: Some theorems on orthogonal systems. Fund. Math. 28, 309–335 (1937) Novikov, I., Semenov, E.: Haar Series and Linear Operators, p. 218. Cluver Acad. Publ., Dordrecht (1997) Nursultanov, E.D.: Concerning the multiplicators of Fourier series in the trigonometric system. Math. Notes 63(2), 205–214 (1998) Nursultanov, E.D.: Net spaces and inequalities of Hardy–Littlewood type. Sb. Math. 189(3), 399–419 (1998) Nursultanov, E.D., Tleukhanova, N.T.: Multipliers of multiple Fourier series. Proc. Steklov Inst. Math. 227, 231–236 (1999) Nursultanov, E.D., Tleukhanova, N.T.: Lower and upper bounds for the norm of multipliers of multiple trigonometric Fourier series in Lebesgue spaces. Funct. Anal. Appl. 34(2), 151–153 (2000) Nursultanov, E.D.: On the coefficients of multiple Fourier series in \(L_p\)-spaces. Izv. Math. 64(1), 93–120 (2000) Nursultanov, E.D., Aubakirov, T.U.: The Hardy–Littlewood theorem for Fourier–Haar series. Math. Notes 73(3), 314–320 (2003) Nursultanov, E.D.: Interpolation theorems for anisotropic function spaces and their applications. Rep. Russ. Acad. Sci. 394(1), 1–4 (2004) Nursultanov, E.D.: Nikol’skii’s Inequality for different metrics and properties of the sequence of norms of the Fourier sums of a function in the Lorentz space. Proc. Steklov Inst. Math. 255, 185–202 (2006) Nursultanov, E., Tikhonov, S.: Net spaces and boundedness of integral operators. J. Geom. Anal. 21, 950–981 (2011) Nursultanov, E., Sarybekova, L., Tleukhanova, N.: Some new Fourier multiplier results of Lizorkin and Hormander types. In: Functional Analysis in Interdisciplinary Applications, Springer Proc. Math. Stat., vol. 216, pp. 58–82. Springer, Cham (2017) Persson, L.-E., Sarybekova, L., Tleukhanova, N.: A Lizorkin theorem on Fourier series multipliers for strong regular systems. In: Analysis for Science, Engineering and Beyond, Springer Proc. Math., vol. 6, pp. 305–317. Springer, Heidelberg (2012) Sarybekova, L.O., Tararykova, T.V., Tleukhanova, N.T.: On a generalization of the Lizorkin theorem on Fourier multipliers. Math. Inequal. Appl. 13(3), 613–624 (2010) Semenov, E.M., Uksusov, S.N.: Multipliers of the Haar series. Sib. Math. J. 53(2), 310–315 (2012) Wark, H.M.: Operator-valued Fourier Haar multipliers on vector-valued \(L_1\) spaces. J. Math. Anal. Appl. 450, 1148–1156 (2017) Yano, S.: On a lemma of Marcinkiewicz and its applications to Fourier series. Tohoku Math. J. 11, 195–215 (1959) Yudin, V.A.: Spherical sums of Fourier series in \(L_p\). Math. Notes 46(2), 675–680 (1989)