Multiplicity of Solutions on a Nonlinear Eigenvalue Problem for p(x)-Laplacian-like Operators
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ambrosetti A., Rabinowitz P.H.: Dual variational methods in critical point theory and applications. J. Funct. Anal. 173(14), 349–381 (1972)
Clément P., Manásevich R., Mitidieri E.: On a modified capillary equation. Journal of Differential Equations 124, 343–358 (1996)
Chang K.C.: Critical Point Theory and Applications. Shanghai Scientific and Technology Press, Shanghai (1986)
Concus P., Finn P.: A singular solution of the capillary equation I, II. Invent. Math. 29, 143–148 (1975) 149–159
Fan X.L.: Solutions for p(x)–Laplacian Dirichlet problems with singular coefficients. J. Math. Anal. Appl. 312, 464–477 (2005)
Fan X.L., Han X.Y.: Existence and multiplicity of solutions for p(x)–Laplacian equations in $${\mathbb {R}^N}$$ . Nonlinear Anal. 59, 173–188 (2004)
Fan X.L., Zhang Q.H.: Existence of solutions for p(x)–Laplacian Dirichlet problem. Nonlinear Anal. 52, 1843–1852 (2003)
Fan X.L.: The regularity of Lagrangians f(x, ξ) = |ξ| a with Hölder exponents a(x). Acta Math. Sinica 12(3), 254–261 (1996)
Fan X.L.: Solutions for p(x)–Laplacian Dirichlet problems with singular coefficients. J. Math. Anal. Appl. 312, 464–477 (2005)
Fan X.L., Han X.Y.: Existence and multiplicity of solutions for p(x)–Laplacian equations in $${\mathbb {R}^N}$$ . Nonlinear Anal. 59, 173–188 (2004)
Fan X.L., Zhang Q.H.: Existence of solutions for p(x)–Laplacian Dirichlet problem. Nonlinear Anal. 52, 1843–1852 (2003)
Fan X.L., Zhao D.: Regularity of minimizers of integrals with continuous p(x)–growth conditions. Chinese Ann. Math. Ser. A 17(5), 557–564 (1996)
Fan X.L., Zhao D.: On the generalize OrliczSobolev space W k,p (Ω). J. Gansu Educ. College 12(1), 1–6 (1998)
Finn R.: On the behavior of a capillary surface near a singular point. J. Anal. Math. 30, 156–163 (1976)
Gidas B., Spruck J.: Global and local behaviour of positive solutions on nonlinear elliptic equations. Comm. Pure Appl. Math. 34, 525–598 (1981)
Guo Z.: On the number of positive solutions for quasilinear elliptic problems. Nonlin. Anal. 27, 229–247 (1996)
Guo Z., Webb J.R.L.: Large and small solutions of a class of quasilinear elliptic eigenvalue problems. J. Differential Equations 180, 1–50 (2002)
Hou D.D.: On a class of sublinear quasilinear elliptic problems. Proceedings AMS 131, 2409–2414 (2003)
Johnson W.E., Perko L.: Interior and exterior boundary value problems from the theory of the capillary tube. Arch. Rational Mech. Anal. 29, 129–143 (1968)
Liu S.B., Li S.J.: Infinitely many solutions for a superlinear elliptic equation. Acta Math. Sinica 46(4), 625–630 (2003)
Mihăilescu M., Moroşanu G.: Existence and multiplicity of solutions for an anisotropic elliptic problem involving variable exponent growth conditions. Appl. Anal. 89, 257–271 (2010)
Mihăilescu M., Pucci P., Rădulescu V.: Eigenvalue problems for anisotropic quasilinear elliptic equations with variable exponent. J. Math. Anal. Appl. 340, 687–698 (2008)
Motreanu D., Motreanu V., Papageorgiou N.S.: Multiple nontrivial solutions for nonlinear eigenvalue problems. Proceedings AMS 135, 3649–3658 (2007)
Ni W.M.: Serrin, Non–existence theorems for quasilinear partial differential equations. Rend. Circ. Mat. Palermo (suppl.) 8, 171–185 (1985)
Ni W.M., Serrin J.: Existence and non–existence theorem s for ground states for quasilinear partial differential equations. Att. Conveg. Lincei 77, 231–257 (1985)
Peletier L.A., Serrin J.: Ground states for the prescribed mean curvature equation. Proc. Amer. Math. Soc. 100(4), 694–700 (1987)
Perera K.: Multiple positive solutions for a class of quasilinear elliptic boundary value problems. Electronic J. Differential Equations 7, 1–5 (2003)
Qian C., Shen Z.: Existence and multiplicity of solutions for p(x)–Laplacian equation with nonsmooth potential. Nonlinear Anal. Real World Appl. 11, 106–116 (2010)
Zang A.: p(x)–Laplacian equations satisfying Cerami condition. J. Math. Anal. Appl. 337, 547–555 (2008)
Zhao D., Fan X.L.: On the Nemytsky operators from L p1(x)(Ω) to L p2(x) (Ω). J. Lanzhou Univ. 34(1), 1–5 (1998)
Wang Z.Q.: On a superlinear elliptic equation. Ann. Inst. H. Poincare Anal. Non Lineaire 8, 43–57 (1991)