Multiplexed shRNA-miRs as a candidate for anti HIV-1 therapy: strategies, challenges, and future potential
Tóm tắt
The spread of HIV is on the rise and has become a global issue, especially for underdeveloped and developing countries. This is due to the fact that HIV majorly occurs asymptomatically and is implausible for early diagnosis. Recent advances in research and science have enabled the investigation of a new potential treatment involving gene-based therapy, known as RNA interference (RNAi) that will direct gene silencing and further compensate for natural variants and viral mutants. Several types of small regulatory RNA are discussed in this present study, including microRNA (miRNA), small interfering RNA (siRNA), and short hairpin RNA (shRNA). This paper examines the mechanism of RNAi as a viable HIV therapy, using a minimum of four shRNAs to target both dispensable host components (CCR5) and viral genes (Gag, Env, Tat, Pol I, Pol II and Vif). Moreover, a multiplexed mechanism of shRNAs and miRNA is known to be effective in preventing viral escape due to mutation as the miRNA develops a general polycistronic platform for the expression of a large amount of shRNA-miRs. Several administration methods as well as the advantages of this RNAi treatment are also discussed in this study. The administration methods include (1) ex vivo delivery with the help of viral vectors, nanoparticles, and electroporation, (2) nonspecific in vivo delivery using non-viral carriers including liposomes, dendrimers and aptamers, as well as (3) targeted delivery that uses antibodies, modified nanoparticles, nucleic acid aptamers, and tissue-specific serotypes of AAV. Moreover, the advantages of this treatment are related to the effectiveness in silencing the HIV gene, which is more compatible compared to other gene therapy treatments, such as ZFN, TALEN, and CRISPR/Cas9.
Tài liệu tham khảo
Seitz R (2016) Human immunodeficiency virus (HIV). Transfus Med Hemother 43:203–222. https://doi.org/10.1159/000445852
Ognenovska K, Klemm V, Ledger S, Turville S, Symonds G, Kelleher AD, Ahlenstiel CL (2019) Mechanisms for controlling HIV-1 infection: a gene therapy approach. In: Vivo Ex Vivo Gene Ther Inherit Non-Inherited Disord. https://doi.org/10.5772/intechopen.79669
Cornu TI, Mussolino C, Müller MC, Wehr C, Kern WV, Cathomen T (2021) HIV gene therapy: an update. Hum Gene Ther 32:52–65. https://doi.org/10.1089/hum.2020.159
Bobbin ML, Burnett JC, Rossi JJ (2015) RNA interference approaches for treatment of HIV-1 infection. Genome Med 7. https://doi.org/10.1186/s13073-015-0174-y
Xiao T, Cai Y, Chen B (2021) Hiv-1 entry and membrane fusion inhibitors. Viruses 13:1–19. https://doi.org/10.3390/v13050735
Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, Donfield S, Vlahov D, Kaslow R, Saah A, Rinaldo C, Detels R, O’Brien SJ (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science (80- ) 273:1856–1862. https://doi.org/10.1126/science.273.5283.1856
Archin NM, Sung JM, Garrido C, Soriano-Sarabia N, Margolis DM (2014) Eradicating HIV-1 infection: seeking to clear a persistent pathogen. Nat Rev Microbiol 12:750–764. https://doi.org/10.1038/nrmicro3352
Stein BS, Gowda SD, Lifson JD, Penhallow RC, Bensch KG, Engleman EG (1987) pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane. Cell 49:659–668. https://doi.org/10.1016/0092-8674(87)90542-3
Sousa R, Chung YJ, Rose JP, Wang BC (1993) Crystal structure of bacteriophage T7 RNA polymerase at 3.3 Å resolution. Nature 364:593–599. https://doi.org/10.1038/364593a0
Yoder KE, Rabe AJ, Fishel R, Larue RC (2021) Strategies for targeting retroviral integration for safer gene therapy: advances and challenges. Front Mol Biosci 8:1–17. https://doi.org/10.3389/fmolb.2021.662331
Zamore PD (2006) RNA interference: big applause for silencing in Stockholm. Cell 127:1083–1086. https://doi.org/10.1016/j.cell.2006.12.001
Scarborough RJ, Gatignol A (2018) RNA interference therapies for an HIV-1 functional cure. Viruses 10:1–19. https://doi.org/10.3390/v10010008
Rettig GR, Behlke MA (2012) Progress toward in vivo use of siRNAs-II. Mol Ther 20:483–512. https://doi.org/10.1038/mt.2011.263
Rao DD, Vorhies JS, Senzer N, Nemunaitis J (2009) siRNA vs. shRNA: similarities and differences. Adv Drug Deliv Rev 61:746–759. https://doi.org/10.1016/j.addr.2009.04.004
Nguyen TD, Trinh TA, Bao S, Nguyen TA (2022) Secondary structure RNA elements control the cleavage activity of DICER. Nat Commun 13:1–16. https://doi.org/10.1038/s41467-022-29822-3
Svoboda P (2020) Key mechanistic principles and considerations concerning RNA interference. Front Plant Sci 11:1–13. https://doi.org/10.3389/fpls.2020.01237
Yoshida T, Asano Y, Ui-Tei K (2021) Modulation of microrna processing by dicer via its associated dsrna binding proteins. Non-coding RNA 7. https://doi.org/10.3390/ncrna7030057
Fareh M, Yeom KH, Haagsma AC, Chauhan S, Heo I, Joo C (2016) TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat Commun 7:1–11. https://doi.org/10.1038/ncomms13694
Bofill-De Ros X, Gu S (2016) Guidelines for the optimal design of miRNA-based shRNAs. Methods 103:157–166. https://doi.org/10.1016/j.ymeth.2016.04.003
Applegate TL, Birkett DJ, Mcintyre GJ, Jaramillo AB, Symonds G, Murray JM (2010) In silico modeling indicates the development of HIV-1 resistance to multiple shRNA gene therapy differs to standard antiretroviral therapy. Retrovirology 7:1–14. https://doi.org/10.1186/1742-4690-7-83
Mcintyre GJ, Groneman JL, Yu YH, Tran A, Applegate TL (2011) Multiple shRNA combinations for near-complete coverage of all HIV-1 strains. AIDS Res Ther 8:1–15. https://doi.org/10.1186/1742-6405-8-1
Choi JG, Bharaj P, Abraham S, Ma H, Yi G, Ye C, Dang Y, Manjunath N, Wu H, Shankar P (2015) Multiplexing seven miRNA-Based shRNAs to suppress HIV replication. Mol Ther 23:310–320. https://doi.org/10.1038/mt.2014.205
Tsai HE, Liu LF, Dusting GJ, Weng WT, Chen SC, Kung ML, Tee R, Liu GS, Tai MH (2012) Pro-opiomelanocortin gene delivery suppresses the growth of established Lewis lung carcinoma through a melanocortin-1 receptor-independent pathway. J Gene Med 14:44–53. https://doi.org/10.1002/jgm
Tsao LC, Guo H, Jeffrey J, Hoxie JA, Su L (2016) CCR5 interaction with HIV-1 Env contributes to Env-induced depletion of CD4 T cells in vitro and in vivo. Retrovirology 13:1–13. https://doi.org/10.1186/s12977-016-0255-z
Pauza CD, Huang K, Bordon J (2021) Advances in cell and gene therapy for HIV disease: it is good to be specific. Curr Opin HIV AIDS 16:83–87. https://doi.org/10.1097/COH.0000000000000666
Swamy MN, Wu H, Shankar P (2016) Recent advances in RNAi-based strategies for therapy and prevention of HIV-1/AIDS. Adv Drug Deliv Rev 103:174–186. https://doi.org/10.1016/j.addr.2016.03.005
Ribeiro RM, Bonhoeffer S (2000) Production of resistant HIV mutants during antiretroviral therapy. Proc Natl Acad Sci U S A 97:7681–7686. https://doi.org/10.1073/pnas.97.14.7681
Morris KV, Chung CH, Witke W, Looney DJ (2005) Inhibition of HIV-1 replication by siRNA targeting conserved regions of gag/pol. RNA Biol 2:17–20. https://doi.org/10.4161/rna.2.1.1198
Shimizu S, Ringpis GE, Marsden MD, Cortado RV, Wilhalme HM, Elashoff D, Zack JA, Chen ISY, Sung An D (2015) RNAi-mediated CCR5 knockdown provides HIV-1 resistance to memory T cells in humanized BLT mice. Mol Ther - Nucleic Acids 4:1–10. https://doi.org/10.1038/mtna.2015.3
Kotowska-Zimmer A, Pewinska M, Olejniczak M (2021) Artificial miRNAs as therapeutic tools: Challenges and opportunities. Wiley Interdiscip Rev RNA 12:1–33. https://doi.org/10.1002/wrna.1640
Liu YP, Haasnoot J, ter Brake O, Berkhout B, Konstantinova P (2008) Inhibition of HIV-1 by multiple siRNAs expressed from a single microRNA polycistron. Nucleic Acids Res 36:2811–2824. https://doi.org/10.1093/nar/gkn109
Gu S, Jin L, Zhang Y, Huang Y, Zhang F, Valdmanis PN, Kay MA (2012) The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo. Cell 151:900–911. https://doi.org/10.1016/j.cell.2012.09.042
Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–377. https://doi.org/10.1016/S0092-8674(00)80110-5
Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber M, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Parmentier M et al (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–726
Zimmerman PA, Buckler-White A, Alkhatib G, Spalding T, Kubofcik J, Combadiere C, Weissman D, Cohen O, Rubbert A, Lam G, Vaccarezza M, Kennedy PE, Kumaraswami V, Giorgi JV, Detels R, Hunter J, Chopek M, Berger EA, Fauci AS, Nutman TB, Murphy PM (1997) Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: Studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med 3:23–36. https://doi.org/10.1007/bf03401665
Agrawal L, Lu X, Qingwen J, VanHorn-Ali Z, Nicolescu IV, McDermott DH, Murphy PM, Alkhatib G (2004) Role for CCR5Δ32 protein in resistance to R5, R5X4, and X4 human immunodeficiency virus type 1 in primary CD4 + cells. J Virol 78:2277–2287. https://doi.org/10.1128/jvi.78.5.2277-2287.2004
Ghorban K, Dadmanesh M, Hassanshahi G, Momeni M, Zare-Bidaki M, Arababadi MK, Kennedy D (2013) Is the CCR5 Δ 32 mutation associated with immune system-related diseases? Inflammation 36:633–642. https://doi.org/10.1007/s10753-012-9585-8
Ganepola S, Müßig A, Allers K, Ph D, Schneider T, Hofmann J, Kücherer C, Blau O, Blau IW, Hofmann WK, Thiel E, Ph D, Hofmann J, Ph D, Kücherer C, Blau O, Blau IW, Hofmann WK, Thiel E (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360:692–697
Allers K, Hütter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, Schneider T (2011) Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood 117:2791–2799. https://doi.org/10.1182/blood-2010-09-309591
Hütter G, Ganepola S (2011) Eradication of HIV by transplantation of CCR5-deficient hematopoietic stem cells. ScientificWorldJournal 11:1068–1076. https://doi.org/10.1100/tsw.2011.102
Hütter G, Thiel E (2011) Allogeneic transplantation of CCR5-deficient progenitor cells in a patient with HIV infection: an update after 3 years and the search for patient no. 2. Aids 25:273–274. https://doi.org/10.1097/QAD.0b013e328340fe28
Ledger S, Howe A, Turville S, Aggarwal A, Savkovic B, Ong A, Wolstein O, Boyd M, Millington M, Gorry PR, Murray JM, Symonds G (2018) Analysis and dissociation of anti-HIV effects of shRNA to CCR5 and the fusion inhibitor C46. J Gene Med 20. https://doi.org/10.1002/jgm.3006
Bassett E, Clark RF (2014) More on nicotine poisoning in infants. N Engl J Med 371:880–880. https://doi.org/10.1056/nejmc1407921
Moranguinho I, Valente ST (2020) Block-and-lock: new horizons for a cure for hiv-1. Viruses 12. https://doi.org/10.3390/v12121443
Herrera-Carrillo E, Berkhout B (2015) The impact of HIV-1 genetic diversity on the efficacy of a combinatorial RNAi-based gene therapy. Gene Ther 22:485–495. https://doi.org/10.1038/gt.2015.11
Kay MA (2011) State-of-the-art gene-based therapies: the road ahead. Nat Rev Genet 12:316–328. https://doi.org/10.1038/nrg2971
Burnett JC, Zaia JA, Rossi JJ (2012) Creating genetic resistance to HIV. Curr Opin Immunol 24:625–632. https://doi.org/10.1016/j.coi.2012.08.013
Burnett JC, Rossi JJ, Tiemann K (2011) Current progress of siRNA/shRNA therapeutics in clinical trials. Biotechnol J 6:1130–1146. https://doi.org/10.1002/biot.201100054
Grimm D, Wang L, Lee JS, Schürmann N, Gu S, Börner K, Storm TA, Kay MA (2010) Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. J Clin Invest 120:3106–3119. https://doi.org/10.1172/JCI43565
Persons DA (2010) Editorial: lentiviral vector gene therapy: effective and safe? Mol Ther 18:861–862. https://doi.org/10.1038/mt.2010.70
Kim SS, Peer D, Kumar P, Subramanya S, Wu H, Asthana D, Habiro K, Yang YG, Manjunath N, Shimaoka M, Shankar P (2010) RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol Ther 18:370–376. https://doi.org/10.1038/mt.2009.271
DiGiusto DL, Stan R, Krishnan A, Li H, Rossi JJ, Zaia JA (2013) Development of hematopoietic stem cell based gene therapy for HIV-1 infection: considerations for proof of concept studies and translation to standard medical practice. Viruses 5:2898–2919. https://doi.org/10.3390/v5112898
DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A, Mi S, Yam P, Stinson S, Kalos M, Alvarnas J, Lacey SF, Yee JK, Li M, Couture L, Hsu D, Forman SJ, Rossi JJ, Zaia JA (2010) RNA-based gene therapy for HIV with lentiviral vector-modified CD34 + cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Transl Med 2. https://doi.org/10.1126/scitranslmed.3000931
Zhou J, Neff CP, Liu X, Zhang J, Li H, Smith DD, Swiderski P, Aboellail T, Huang Y, Du Q, Liang Z, Peng L, Akkina R, Rossi JJ (2011) Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol Ther 19:2228–2238. https://doi.org/10.1038/mt.2011.207
Yan M, Liang M, Wen J, Liu Y, Lu Y, Chen ISY (2012) Single siRNA nanocapsules for enhanced RNAi delivery. J Am Chem Soc 134:13542–13545. https://doi.org/10.1021/ja304649a
Kotterman MA, Schaffer DV (2014) Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet 15:445–451. https://doi.org/10.1038/nrg3742
Karlsen TA, Brinchmann JE (2013) Liposome delivery of MicroRNA-145 to mesenchymal stem cells leads to immunological off-target effects mediated by RIG-I. Mol Ther 21:1169–1181. https://doi.org/10.1038/mt.2013.55
Keefe AD, Pai S, Ellington A (2010) Aptamers as therapeutics. Nat Rev Drug Discov 9:537–550. https://doi.org/10.1038/nrd3141
Wheeler LA, Vrbanac V, Trifonova R, Brehm MA, Gilboa-Geffen A, Tanno S, Greiner DL, Luster AD, Tager AM, Lieberman J (2013) Durable knockdown and protection from HIV transmission in humanized mice treated with gel-formulated CD4 aptamer-siRNA chimeras. Mol Ther 21:1378–1389. https://doi.org/10.1038/mt.2013.77
Krebs MD, Alsberg E (2011) Localized, targeted, and sustained siRNA delivery. Chem - A Eur J 17:3054–3062. https://doi.org/10.1002/chem.201003144
Song E, Zhu P, Lee SK, Chowdhury D, Kussman S, Dykxhoorn DM, Feng Y, Palliser D, Weiner DB, Shankar P, Marasco WA, Lieberman J (2005) Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol 23:709–717. https://doi.org/10.1038/nbt1101
Katakowski JA, Palliser D (2010) SiRNA-based topical microbicides targeting sexually transmitted infections. Curr Opin Mol Ther 12:192–202
Wu Y, Navarro F, Lal A, Basar E, Pandey RK, Feng Y, Lee SJ, Lieberman J, Palliser D (2010) NIH Public Access 5:84–94. https://doi.org/10.1016/j.chom.2008.12.003.Durable
Aagaard LA, Zhang J, von Eije KJ, Li H, Sætrom P, Amarzguioui M, Rossi JJ (2008) Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs. Gene Ther 15:1536–1549. https://doi.org/10.1038/gt.2008.147
Uprichard SL (2005) The therapeutic potential of RNA interference. FEBS Lett 579:5996–6007. https://doi.org/10.1016/j.febslet.2005.08.004
Von Eije KJ, Berkhout B (2009) RNA-interference-based gene therapy approaches to HIV type-1 treatment: tackling the hurdles from bench to bedside. Antivir Chem Chemother 19:221–223. https://doi.org/10.1177/095632020901900602
