Multiplexed DNA detection with DNA tweezers in a one-pot reaction
Tài liệu tham khảo
Dobnik, 2014, Simultaneous detection of RNA and DNA targets based on multiplex isothermal amplification, J. Agric. Food Chem., 62, 2989, 10.1021/jf5002149
Vijian, 2016, Non-protein coding RNA-based genosensor with quantum dots as electrochemical labels for attomolar detection of multiple pathogens, Biosens. Bioelectron., 77, 805, 10.1016/j.bios.2015.10.057
Wang, 2017, Simultaneous imaging of three tumor-related mRNAs in living cells with a DNA tetrahedron-based multicolor nanoprobe, ACS Sensors, 2, 735, 10.1021/acssensors.7b00290
Zeng, 2017, DNA tetrahedral nanostructure-based electrochemical miRNA biosensor for simultaneous detection of multiple miRNAs in pancreatic carcinoma, ACS Appl. Mater. Interfaces, 9, 24118, 10.1021/acsami.7b05981
Zhang, 2010, Aptamer-based multicolor fluorescent gold nanoprobes for multiplex detection in homogeneous solution, Small, 6, 201, 10.1002/smll.200901012
Douglas, 2009, Self-assembly of DNA into nanoscale three-dimensional shapes, Nature, 459, 414, 10.1038/nature08016
Rothemund, 2006, Folding DNA to create nanoscale shapes and patterns, Nature, 440, 297, 10.1038/nature04586
Ouyang, 2017, Docking of antibodies into the cavities of DNA origami structures, Angew. Chem. Int. Ed., 56, 14423, 10.1002/anie.201706765
Ding, 2010, Gold nanoparticle self-similar chain structure organized by DNA origami, J. Am. Chem. Soc., 132, 3248, 10.1021/ja9101198
Sun, 2014, Casting inorganic structures with DNA molds, Science, 346, 10.1126/science.1258361
Knudsen, 2015, Routing of individual polymers in designed patterns, Nat. Nanotechnol., 10, 892, 10.1038/nnano.2015.190
Krissanaprasit, 2016, Programmed switching of single polymer conformation on DNA origami, ACS Nano, 10, 2243, 10.1021/acsnano.5b06894
Madsen, 2017, Preparation, single-molecule manipulation, and energy transfer investigation of a polyfluorene-graft-DNA polymer, Chem. Eur. J., 23, 10511, 10.1002/chem.201702780
Jiang, 2012, DNA origami as a carrier for circumvention of drug resistance, J. Am. Chem. Soc., 134, 13396, 10.1021/ja304263n
Lee, 2012, Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery, Nat. Nanotechnol., 7, 389, 10.1038/nnano.2012.73
Zhao, 2012, DNA origami delivery system for cancer therapy with tunable release properties, ACS Nano, 6, 8684, 10.1021/nn3022662
Kuzyk, 2012, DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response, Nature, 483, 311, 10.1038/nature10889
Pal, 2011, DNA directed self-assembly of anisotropic plasmonic nanostructures, J. Am. Chem. Soc., 133, 17606, 10.1021/ja207898r
Wen, 2012, DNA Nanostructure-based Interfacial engineering for PCR-free ultrasensitive electrochemical analysis of microRNA, Sci. Rep., 2, 867, 10.1038/srep00867
Lin, 2014, Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection, Angew. Chem. Int. Ed., 54, 2151, 10.1002/anie.201410720
Krissanaprasit, 2011, RGB colour coding of Y-shaped DNA for simultaneous tri-analyte solid phase hybridization detection, Biosens. Bioelectron., 26, 2183, 10.1016/j.bios.2010.09.028
Li, 2005, Multiplexed detection of pathogen DNA with DNA-based fluorescence nanobarcodes, Nat. Biotechnol., 23, 885, 10.1038/nbt1106
Lin, 2012, Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA, Nat Chem., 4, 832, 10.1038/nchem.1451
Liu, 2013, A DNA tweezer-actuated enzyme nanoreactor, Nat. Commun., 4
Müller, 2006, Single-pair FRET characterization of DNA tweezers, Nano Lett., 6, 2814, 10.1021/nl0619406
Yurke, 2000, A DNA-fuelled molecular machine made of DNA, Nature, 406, 605, 10.1038/35020524
Zhou, 2012, Reversible regulation of protein binding affinity by a DNA machine, J. Am. Chem. Soc., 134, 1416, 10.1021/ja209590u
Gong, 2015, RNA-regulated molecular tweezers for sensitive fluorescent detection of microRNA from cancer cells, Biosens. Bioelectron., 71, 98, 10.1016/j.bios.2015.04.003
Douglas, 2009, Rapid prototyping of 3D DNA-origami shapes with caDNAno, Nucl. Acids Res., 37, 5001, 10.1093/nar/gkp436
Zhang, 2011, Dynamic DNA nanotechnology using strand-displacement reactions, Nat. Chem., 3, 103, 10.1038/nchem.957
Goodman, 2005, Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication, Science, 310, 1661, 10.1126/science.1120367
Goodman, 2008, Reconfigurable, braced, three-dimensional DNA nanostructures, Nat. Nanotechnol., 3, 93, 10.1038/nnano.2008.3
Mao, 2016, Activity modulation and allosteric control of a scaffolded DNAzyme using a dynamic DNA nanostructure, Chem. Sci., 7, 1200, 10.1039/C5SC03705K
Xie, 2017, DNA tetrahedron nanostructures for biological applications: biosensors and drug delivery, Analyst, 142, 3322, 10.1039/C7AN01154G
Song, 2016, Dynamic modulation of DNA hybridization using allosteric DNA tetrahedral nanostructures, Anal. Chem., 88, 8043, 10.1021/acs.analchem.6b01373
Pei, 2012, Reconfigurable three-dimensional DNA nanostructures for the construction of intracellular logic sensors, Angew. Chem. Int. Ed., 51, 9020, 10.1002/anie.201202356
Ge, 2014, Hybridization chain reaction amplification of microRNA detection with a tetrahedral DNA nanostructure-based electrochemical biosensor, Anal Chem., 86, 2124, 10.1021/ac4037262
Borse, 2019, Process parameter optimization for lateral flow immunosensing, Mater. Sci. Energy Technol., 2, 434
Fu, 2012, Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures, J. Am. Chem. Soc., 134, 5516, 10.1021/ja300897h
Fu, 2013, Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors, J. Am. Chem. Soc., 135, 696, 10.1021/ja3076692
Linko, 2015, A modular DNA origami-based enzyme cascade nanoreactor, Chem. Commun, 51, 5351, 10.1039/C4CC08472A
Kumar, 2018, Nanoengineered material based biosensing electrodes for enzymatic biofuel cells applications, Mater. Sci. Energy Technol., 1, 38