Multiple-valley effect on modulation of thermoelectric properties of n-type ZrCuSiAs-structure oxyantimonides LnTSbO (Ln= lanthanides and T=Zn, Mn)
Tài liệu tham khảo
Bell, 2008, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems, Science, 321, 1457, 10.1126/science.1158899
Hsu, 2004, Cubic AgPbmSbTe2+m: bulk thermoelectric materials with high figure of merit, Science, 303, 818, 10.1126/science.1092963
Basu, 2014, Improved thermoelectric performance of hot pressed nanostructured n-type SiGe bulk alloys, J Mater Chem, 2, 6922, 10.1039/c3ta14259k
Snyder, 2008, Complex thermoelectric materials, Nat Mater, 7, 105, 10.1038/nmat2090
Liu, 2018, Crystallographically textured nanomaterials produced from the liquid phase sintering of BixSb2-xTe3 nanocrystal building blocks, Nano Lett, 18, 2557, 10.1021/acs.nanolett.8b00263
Manettas, 2018, Thermoelectric performance of single phase p-type quaternary (PbTe)0.65-x(PbSe)0.35(PbS)x alloys, ACS Appl Energy Mater, 1, 1898, 10.1021/acsaem.7b00174
Zhou, 2017, Promising thermoelectric bulk materials with 2D structures, Adv Mater, 29, 1702676, 10.1002/adma.201702676
Zhang, 2015, Thermoelectric materials: energy conversion between heat and electricity, J Materiomics, 1, 92, 10.1016/j.jmat.2015.01.001
Chen, 2018, High-performance SnSe thermoelectric materials: progress and future challenge, Prog Mater Sci, 97, 283, 10.1016/j.pmatsci.2018.04.005
Zhao, 2010, Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials, Appl Phys Lett, 97, 10.1063/1.3485050
Liu, 2016, Synergistically optimizing electrical and thermal transport properties of BiCuSeO via a dual-doping approach, Adv Energy Mater, 6, 1502423, 10.1002/aenm.201502423
Zhao, 2014, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals, Nature, 508, 373, 10.1038/nature13184
Chang, 2018, 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals, Science, 360, 778, 10.1126/science.aaq1479
Pӧttgen, 2008, Materials with ZrCuSiAs-type structure, Z Naturforsch, 63b, 1135, 10.1515/znb-2008-1001
Muir, 2012, ZrCuSiAs type layered oxypnictides: a bird's eye view of LnMPnO compositions, Prog Solid State Chem, 40, 41, 10.1016/j.progsolidstchem.2012.08.001
Clarke, 2008, Structures, physical properties, and chemistry of layered oxychalcogenides and oxypnictides, Inorg Chem, 47, 8473, 10.1021/ic8009964
Suzuki, 2011, Doping control and thermoelectric properties in R1−xAxZnSbO (R= La, Ce; A= Ca, Sr), Phys Rev B, 83, 10.1103/PhysRevB.83.035204
Liu, 2016, Ce1-xSrxZnSbO: new thermoelectric materials formed between intermetallics and oxides, J Alloy Comp, 688, 849, 10.1016/j.jallcom.2016.07.235
Pan, 2016, Structure and thermoelectric performance of layered compounds Nd1-xSrxOZnSb, J Alloy Comp, 688, 153, 10.1016/j.jallcom.2016.07.197
Pan, 2017, Influence of Ag doping on the thermoelectric properties of layered compound NdOZnSb, Mater Lett, 189, 126, 10.1016/j.matlet.2016.11.073
Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys Rev B, 54, 11169, 10.1103/PhysRevB.54.11169
Blöchl, 1994, Projector augmented-wave method, Phys Rev B, 50, 17953, 10.1103/PhysRevB.50.17953
Kresse, 1999, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys Rev B, 59, 1758, 10.1103/PhysRevB.59.1758
Kayanuma, 2009, Epitaxial film growth and optoelectrical properties of layered semiconductors, LaMnXO (X = P, As, and Sb), J Appl Phys, 105, 10.1063/1.3093685
Schellenberg, 2008, Structural and 121Sb mӧssbauer spectroscopic investigations of the antimonide oxides REMnSbO (RE = La, Ce, Pr, Nd, Sm, Gd, Tb) and REZnSbO (RE = La, Ce, Pr), Z Naturforsch, 63b, 834, 10.1515/znb-2008-0705
Nientiedt, 1997, Quaternary equiatomic manganese pnictide oxides AMnPO (A = La-Nd, Sm, Gd-Dy), AMnAsO (A = Y, La-Nd, Sm, Gd-Dy, U), and AMnSbO (A = La-Nd, Sm, Gd) with ZrCuSiAs type structure, Z Naturforsch, 52b, 560, 10.1515/znb-1997-0504
Wollesen, 1997, Quaternary equiatomic compounds LnZnSbO (Ln = La-Nd, Sm) with ZrCuSiAs-type structure, Z Naturforsch, 52b, 1467, 10.1515/znb-1997-1205
Takano, 2008, Electrical and magnetic properties of LnOZnPn (Ln=rare earths; Pn=P, As, Sb), J Alloy Comp, 451, 467, 10.1016/j.jallcom.2007.04.203
Yang, 2014, The relationship between the electronic structure and thermoelectric properties of Zintl compounds M2Zn5As4 (M = K, Rb), Phys Chem Chem Phys, 16, 5661, 10.1039/c3cp54545h
Pei, 2011, Convergence of electronic bands for high performance bulk thermoelectrics, Nature, 473, 66, 10.1038/nature09996
Liu, 2013, Low electron scattering potentials in high performance Mg2Si0.45Sn0.55 based thermoelectric solid solutions with band convergence, Adv Energy Mater, 3, 1238, 10.1002/aenm.201300174
Madsen, 2006, BoltzTraP. A code for calculating band-structure dependent quantities, Comput Phys Commun, 175, 67, 10.1016/j.cpc.2006.03.007
Dong, 2016, First-principles study on band structures and electrical transports of doped-SnTe, J Materiomics, 2, 158, 10.1016/j.jmat.2016.05.007
Zhou, 2018, Influence of defects on the thermoelectricity in SnSe: a comprehensive theoretical study, Phys Rev B, 97, 245202, 10.1103/PhysRevB.97.245202
Amin, 2017, Thermoelectric properties of the misfit cobaltate Ca3Co4O9, Appl Phys Lett, 110, 233505, 10.1063/1.4984960
Yang, 2017, Unravelling the progressive role of rattlers in thermoelectric clathrate and strategies for performance improvement: concurrently enhancing electronic transport and blocking phononic transport, Appl Phys Lett, 111, 242101, 10.1063/1.4998646
Tak, 2018, Ultralow lattice thermal conductivity and significantly enhanced near-room-temperature thermoelectric figure of merit in α-Cu2Se through suppressed Cu vacancy formation by overstoichiometric Cu addition, Chem Mater, 30, 3276, 10.1021/acs.chemmater.8b00254
Wilson AH. The theory of metals. second ed. New York: Cambridge University Press; p. 264.
Cutler, 1969, Observation of anderson localization in an electron gas, Phys Rev, 181, 1336, 10.1103/PhysRev.181.1336
Li, 2018, Low-symmetry rhombohedral GeTe thermoelectrics, Joule, 2, 976, 10.1016/j.joule.2018.02.016
Li, 2017, Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects, Adv Mater, 29, 1605887, 10.1002/adma.201605887
Wang, 2016, High thermoelectric performance in Te-free (Bi,Sb)2Se3 via structural transition induced band convergence and chemical bond softening, Energy Environ Sci, 9, 3436, 10.1039/C6EE02674E