Multiple stability and uniqueness of the limit cycle in a Gause-type predator–prey model considering the Allee effect on prey
Tài liệu tham khảo
Murdoch, 2003
Turchin, 2003, vol. 35
Courchamp, 1999, Inverse density dependence and the Allee effect, Trends in Ecology and Evolution, 14, 405, 10.1016/S0169-5347(99)01683-3
Dennis, 1989, Allee effects: population growth, critical density, and the chance of extinction, Natural Resource Modeling, 3, 481, 10.1111/j.1939-7445.1989.tb00119.x
Stephens, 1999, Consequences of the Allee effect for behaviour, ecology and conservation, Trends in Ecology and Evolution, 14, 401, 10.1016/S0169-5347(99)01684-5
Freedman, 1980
Kuang, 1988, Uniqueness of limit cycles in Gause type models of predator–prey systems, Mathematical Biosciences, 88, 67, 10.1016/0025-5564(88)90049-1
Xiao, 2003, On the uniqueness and nonexistence of limit cycles for predator–prey systems, Nonlinearity, 16, 1185, 10.1088/0951-7715/16/3/321
Hasík, 2010, On a predator–prey system of Gause type, Journal of Mathematical Biology, 60, 59, 10.1007/s00285-009-0257-8
Liu, 2005, Geometric criteria for the nonexistence of cycles in Gause-type predator–prey systems, Proceedings of the American Mathematical Society, 133, 3619, 10.1090/S0002-9939-05-08026-3
Cheng, 1981, Uniqueness of a limit cycle for a predator–prey system, SIAM Journal on Mathematical Analysis, 12, 541, 10.1137/0512047
May, 1972, Limit cycles in predator–prey communities, Science, 177, 900, 10.1126/science.177.4052.900
Albrecht, 1973, Stable limit cycles in prey–predator populations, Science, 181, 1073, 10.1126/science.181.4104.1073
Chicone, 2006, vol. 34
Gaiko, 2003, vol. 559
Coleman, 1983, Hilbert’s 16th. Problem: How Many Cycles?, 279
Stephens, 1999, What is the Allee effect?, Oikos, 87, 185, 10.2307/3547011
Berec, 2007, Multiple allee effects and population management, Trends in Ecology and Evolution, 22, 185, 10.1016/j.tree.2006.12.002
Courchamp, 2008
Angulo, 2007, Double allee effects and extinction in the island fox, Conservation Biology, 21, 1082, 10.1111/j.1523-1739.2007.00721.x
Bazykin, 1997, Dynamics of forest insect density: bifurcation approach, Journal of Theoretical Biology, 186, 267, 10.1006/jtbi.1996.0363
Conway, 1986, Global Analysis of a system of predator–prey Equations, SIAM Journal on Applied Mathematics, 46, 630, 10.1137/0146043
Bazykin, 1998
J.D. Flores, J. Mena-Lorca, B. González-Yañez, E. González-Olivares, Consequences of depensation in a Smith’s Bioeconomic model for open-access fishery, in: R. Mondaini (Ed.), Proceedings of the International Symposium on Mathematical and Computational Biology BIOMAT 2006, E-papers Serviços Editoriais Ltda., 2007, pp. 219–232.
González-Olivares, 2011, Multiple limit cycles in a Gause type predator–prey model with Holling type III functional response and Allee effect on prey, Bulletin of Mathematical Biology, 73, 1378, 10.1007/s11538-010-9577-5
van Voorn, 2007, Heteroclinic orbits indicate overexploitation in predator–prey systems with a strong Allee, Mathematical Biosciences, 209, 451, 10.1016/j.mbs.2007.02.006
Wang, 2001, Speeds of invasion in a model with strong or weak Allee effects, Mathematical Biosciences, 171, 83, 10.1016/S0025-5564(01)00048-7
Wang, 2011, Predator–prey system with strong Allee effect in prey, Journal of Mathematical Biology, 62, 291, 10.1007/s00285-010-0332-1
Clark, 1990
Clark, 2007
Liermann, 2001, Depensation: evidence, models and implications, Fish and Fisheries, 2, 33, 10.1046/j.1467-2979.2001.00029.x
Boukal, 2007, How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses, Theoretical Population Biology, 72, 136, 10.1016/j.tpb.2006.12.003
Boukal, 2002, Single-species models and the Allee effect: extinction boundaries, sex ratios and mate encounters, Journal of Theoretical Biology, 218, 375, 10.1006/jtbi.2002.3084
E. González-Olivares, B. González-Yañez, J. Mena-Lorca, R. Ramos-Jiliberto, Modelling the Allee effect: are the different mathematical forms proposed equivalents? in: R. Mondaini (Ed.), Proceedings of the International Symposium on Mathematical and Computational Biology BIOMAT 2006, E-papers Serviços Editoriais Ltda., Rio de Janeiro, 2007, pp. 53–71.
Goh, 1980
González-Olivares, 2003, Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecological Modelling, 166, 135, 10.1016/S0304-3800(03)00131-5
H. Meneses-Alcay, E. González-Olivares, Consequences of the Allee effect on Rosenzweig–MacArthur predator–prey model, in: R.Mondaini (Ed.), Proceedings of the Third Brazilian Symposium on Mathematical and Computational Biology BIOMAT 2003, E-papers Serviços Editoriais Ltda., vol. 2 2004, pp. 264–277.
Dumortier, 2006
Arrowsmith, 1992
Coulson, 2004, Skeletons, noise and population growth: the end of an old debate?, Trends in Ecology and Evolution, 19, 359, 10.1016/j.tree.2004.05.008
Wolfram Research, Mathematica: a system for doing mathematics by computer, Champaing, IL, 1988.
