Multiple spacecraft configuration designs for coordinated flight missions

CEAS Space Journal - Tập 10 Số 2 - Trang 251-271 - 2018
Federico Fumenti1, Stephan Theil1
1DLR, Institute of Space Systems, Robert Hooke Str. 7, 28359, Bremen, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alfriend, K., Vadali, S., Gurfil, P., How, J., Breger, L.: Spacecraft Formation Flying—Dynamics, Control and Navigation. Butterworth-Heinemann, Oxford (2009)

Balakrishnan, V.: Schaum’s Outline of Theory and Problems of Graph Theory. Schaum’s Series. McGraw-Hill Education, New York (1997)

Battin, R.: An Introduction to the Mathematics and Methods of Astrodynamics, Revised Edition. American Institute of Aeronautics and Astronautics, Reston (1999)

Beigelman, I., Gurfil, P.: Optimal fuel-balanced impulsive formationkeeping for perturbed spacecraft orbits. J. Guidance Control Dyn. 31(5), 1266–1283 (2008). https://doi.org/10.2514/1.34266

Bevilacqua, R., Lovell, T.A.: Analytical guidance for spacecraft relative motion under constant thrust using relative orbit elements. Acta Astron. 102, 47–61 (2014). https://doi.org/10.1016/j.actaastro.2014.05.004 . http://www.sciencedirect.com/science/article/pii/S0094576514001647

Carraghan, R., Pardalos, P.M.: An exact algorithm for the maximum clique problem. Oper. Res. Lett. 9(6), 375–382 (1990). https://doi.org/10.1016/0167-6377(90)90057-C

Carter, T., Humi, M.: Fuel-optimal rendezvous near a point in general Keplerian orbit. J. Guidance Control Dyn. 10(6), 567–573 (1987). https://doi.org/10.2514/3.20257

Clohessy, W., Wiltshire, R.: Terminal guidance system for satellite rendezvous. J. Aerosp. Sci. 27(9), 653–674 (1960). https://doi.org/10.2514/8.8704

D’Amico, S.: Autonomous formation flying in low earth orbit. Ph.D. thesis, Technical University of Delft, Delft, The Netherlands (2010)

D’Amico, S., Montenbruck, O.: Proximity operations of formation-flying spacecraft using an eccentricity/inclination vector separation. J. Guidance Control Dyn. 29(3), 554–563 (2006). https://doi.org/10.2514/1.15114

de Bruijn, F.J., Gill, E.: Delayed target tracking for along-track formations. J. Guidance Control Dyn. 38(7), 1318–1323 (2015)

Diestel, R.: Graph Theory. Electronic library of mathematics. Springer, New York (2000)

Eckstein, M., Rajasingh, C., Blumer, P.: Colocation strategy and collision avoidance for the geostationary satellites at 19 degrees west. In: International Symposium on Space Dynamics, Toulouse, France (1989)

Fumenti, F., Schlotterer, M., Theil, S.: Quasi-impulsive maneuvers to correct mean orbital elements in leo. In: Proceedings of the 3rd CEAS EuroGNC, Toulouse, France (2015)

Fumenti, F., Theil, S.: Advances in Aerospace Guidance, Navigation and Control: Selected Papers of the Fourth CEAS Specialist Conference on Guidance, Navigation and Control Held in Warsaw, Poland, April 2017, Chapter Comparison of Multiple Spacecraft Configuration Designs for Coordinated Flight Missions, pp. 585–607. Springer International Publishing (2018). https://doi.org/10.1007/978-3-319-65283-2

Gurfil, P., Herscovitz, J., Pariente, M.: The SAMSON project—cluster flight and geolocation with three autonomous nano-satellites. In: 26th AIAA/USU Conference on Small Satellites, SSC12-VII-2, Salt Lake City, UT, USA (2012)

Hill, G.: Researches in the lunar theory. Am. J. Math. 1(1), 5–26 (1878). https://doi.org/10.2307/2369430

LoBosco, D., Cameron, G., Golding, R., Wong, T.: The Pleiades fractionated space system architecture and the future of national security space. In: AIAA Space Conference and Exposition, AIAA 2008-7687. American Institute of Aeronautics and Astronautics, San Diego, California (2008)

Mazal, L., Gurfil, P.: Cluster flight algorithms for disaggregated satellites. J. Guidance Control Dyn. 36(1), 124–135 (2013). https://doi.org/10.2514/1.57180

Mazal, L., Gurfil, P.: Closed-loop distance-keeping for long-term satellite cluster flight. Acta Astron. 94(1), 73–82 (2014). https://doi.org/10.1016/j.actaastro.2013.08.002

Mishne, D.: Formation control of satellites subject to drag variations and J $$_2$$ 2 perturbations. J. Guidance Control Dyn. 27(4), 685–692 (2004). https://doi.org/10.2514/1.11156

Montenbruck, O., Kirschner, M., D’Amico, S., Bettadpur, S.: E/I-vector separation for safe switching of the GRACE formation. Aerosp. Sci. Technol. 10(7), 628–635 (2006). https://doi.org/10.1016/j.ast.2006.04.001

Moreira, A., Krieger, G., Hajnsek, I., Hounam, D., Werner, M., Riegger, S., Settelmeyer, E.: TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interferometry. In: International Geoscience and Remote Sensing Symposium, vol. 2 (2004). https://doi.org/10.1109/IGARSS.2004.1368578

Persson, S., Jacobsson, B., Gill, E.: PRISMA—demonstration mission for advanced rendezvous and formation flying technologies and sensors. In: 56th International Astronautical Congress, IAC-05-B5.6.B.07, Fukuoka, Japan (2005)

Roscoe, C.W.T., Westphal, J.J., Griesbach, J.D., Schaub, H.: Formation establishment and reconfiguration using differential elements in J $$_2$$ 2 -perturbed orbits. J. Guidance Control Dyn. 38(9), 1725–1740 (2015). https://doi.org/10.2514/1.G000999

Schaub, H., Alfriend, K.T.: J $$_2$$ 2 invariant relative orbits for spacecraft formations. Celest. Mech. Dyn. Astron. 79(2), 77–95 (2001). https://doi.org/10.1023/A:1011161811472

Schaub, H., Alfriend, K.T.: Hybrid Cartesian and orbit element feedback law for formation flying spacecraft. J. Guidance Control Dyn. 25(2), 387–393 (2002). https://doi.org/10.2514/2.4893

Schaub, H., Vadali, S.R., Junkins, J.L., Alfriend, K.T.: Spacecraft formation flying control using mean orbit elements. J. Astron. Sci. 48(1), 69–87 (2000)

Tapley, B.D.: Gravity model determination from the GRACE mission. J. Astron. Sci. 56(3), 273–285 (2008). https://doi.org/10.1007/BF03256553

Tschauner, J., Hempel, P.: Rendezvous zu einem in elliptischer bahn um laufenden ziel. Acta Astron. 11(5), 104–109 (1965)

Weisstein, E.W.: Cubic close packing. From MathWorld—a wolfram web resource. http://mathworld.wolfram.com/CubicClosePacking.html . Accessed 10 Jan 2018

Weisstein, E.W.: Hexagonal close packing. From MathWorld=–a wolfram web resource. http://mathworld.wolfram.com/HexagonalClosePacking.html . Accessed 10 Jan 2018

Wood, D.R.: An algorithm for finding a maximum clique in a graph. Oper. Res. Lett. 21(5), 211–217 (1997). https://doi.org/10.1016/S0167-6377(97)00054-0

Yamanaka, K., Ankersen, F.: New state transition matrix for relative motion on an arbitrary elliptical orbit. J. Guidance Control Dyn. 25(1), 60–66 (2002)