Multiple solutions to boundary value problem for impulsive fractional differential equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
M. Belmekki, J.J. Nieto, R. Rodríguez-López, Existence of periodic solution for a nonlinear fractional differential equation. Bound. Value Probl. 2009 (2009), Article ID 324561, 18 pp.
G. Bonanno, A. Chinnì, Multiple Solutions for elliptic problems involving the p(x)-Laplacian. Le Matematiche LXVI(I) (2011), 105–113.
G. Bonanno, B. Di Bella, J. Henderson, Existence of solutions to second-order boundary-value problems with small perturbations of impulses. Electr. J. Diff. Eq. 2013 (2013), Article # 126, 1–14.
G. Bonanno, S.A. Marano, On the structure of the critical set of nondifferentiable functionals with a weak compactness condition. Appl. Anal. 89 (2010), 1–10.
G. Bonanno, R. Rodríguez-López, S. Tersian, Existence of solutions to boundary value problem for impulsive fractional differential equations. Fract. Calc. Appl. Anal. 17, No 3 (2014), 717–744; DOI: 10.2478/s13540-014-0196-y; http://link.springer.com/article/10.2478/s13540-014-0195-z.
J. Chen, X. H. Tang, Existence and multiplicity of solutions for some fractional boundary value problem via critical point theory. Abstr. Appl. Anal. 2012, Article ID 648635, 21 pp.
F. Jiao, Y. Zhou, Existence of solutions for a class of fractional boundary value problems via critical point theory. Comput. Math. Appl. 62 (2011), 1181–1199.
A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Vol. 204, Elsevier Science B.V., Amsterdam (2006).
V. Kiryakova, Generalized Fractional Calculus and Applications. Pitman Research Notes in Mathematics Series, Vol. 301, Longman Sci. & Technical, Harlow and J. Wiley, N. York (1994).
F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics, A. Carpinteri and F. Mainardi (Eds.), Springer, Wien (1997), 291–348.
I. Podlubny, Fractional Differential Equations. Mathematics in Science and Engineering, Vol. 198, Academic Press, San Diego — CA (1999).
W. Rudin, Real and Complex Analysis. Third Ed., Mc-Graw Hill Int. Ed., N. York (1987).