Multiple solutions of higher topological type for semiclassical nonlinear Schrödinger equations

Xiang-Dong Fang1
1School of Mathematical Sciences, Dalian University of Technology, Dalian, People's Republic of China#TAB#

Tóm tắt

Từ khóa


Tài liệu tham khảo

Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations. II. Calc. Var. Part. Differ. Equ. 18, 207–219 (2003)

Chen, S., Wang, Z.-Q.: Localized nodal solutions of higher topological type for semiclassical nonlinear Schrödinger equations. Calc. Var. Part. Differ. Equ. 56(1), 26 (2017)

Del Pino, M., Felmer, P.: Local mountain passes for semilinear elliptic problems in unbounded domains. Calc. Var. Part. Differ. Equ. 4, 121–137 (1996)

D’Aprile, T., Pistoia, A.: On the number of sign-changing solution of a semiclassical nonlinear Schrödinger equation. Adv. Differ. Equ. 12, 737–758 (2007)

Evéquoz, G., Weth, T.: Entire solutions to nonlinear scalar field equations with indefinite linear part. Adv. Nonlinear Stud. 12, 281–314 (2012)

Fang, X.-D., Szulkin, A.: Multiple solutions for a quasilinear Schrödinger equation. J. Differ. Equ. 254, 2015–2032 (2013)

Floer, A., Weinstein, A.: Nonspreading wave pockets for the cubic Schrödinger equation with a bounded potential. J. Funct. Anal. 69, 397–408 (1986)

Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order, Grundlehren 224, 2nd edn. Springer, Berlin (1983)

Jeanjean, L.: On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on $${\mathbb{R}}^N$$. Proc. R. Soc. Edinb. Sect. A 129, 787–809 (1999)

Jeanjean, L., Tanaka, K.: Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities. Calc. Var. Part. Differ. Equ. 21, 287–318 (2004)

Kang, X., Wei, J.: On interacting bumps of semi-classical states of nonlinear Schrödinger equations. Adv. Differ. Equ. 5, 899–928 (2000)

Li, Y.-Q., Wang, Z.-Q., Zeng, J.: Ground states of nonlinear Schrödinger equations with potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 23(6), 829–837 (2006)

Liu, Z.-L., Wang, Z.-Q.: On the Ambrosetti–Rabinowitz superlinear condition. Adv. Nonlinear Stud. 4, 563–574 (2004)

Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

Rabinowitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math., Vol. 65. Amer. Math. Soc., Providence, RI (1986)

Reed, M., Simon, B.: Methods of Modern Mathematical Physics, vol. IV. Academic Press, New York (1978)

Struwe, M.: Variational Methods, 2nd edn. Springer, Berlin (1996)

Szulkin, A., Weth, T.: Ground state solutions for some indefinite variational problems. J. Funct. Anal. 257, 3802–3822 (2009)

Szulkin, A., Weth, T.: The method of Nehari manifold. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 597–632. International Press, Boston (2010)

Wang, X.: On concentration of positive bound states of nonlinear Schrödinger equations. Commun. Math. Phys. 153, 229–244 (1993)

Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

Wei, J., Weth, T.: On the number of nodal solutions to a singularly perturbed Neumann problem. Manuscr. Math. 117(3), 333–344 (2005)