Multiple solutions of Cu-C6H9NaO7 and Ag-C6H9NaO7 nanofluids flow over nonlinear shrinking surface

Liaquat Ali Lund, Zurni Omar1, Ilyas Khan2, Sumera Dero1
1School of Quantitative Sciences, Universiti Utara Malaysia, Sintok, Malaysia
2Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Tóm tắt

Từ khóa


Tài liệu tham khảo

SHAH N A. Viscous fluid dynamics, for scientists and engineers [M]. Lahore: A-One Publishers, 2012.

CHOI S U S, ESTMAN J A. Enhancing thermal conductivity of fluids with nanoparticles [J]. ASME-Publications, 1995, 231: 99–106.

MAHIAN O, KOLSI L, AMANI M, ESTELLÉ P, AHMADI G, KLEINSTREUER C, MARSHALL J S, SIAVASHI M, TAYLOR R A, NIAZMAND H, WONGWISES S. Recent advances in modeling and simulation of nanofluid flows-Part I: Fundamental and theory [J]. Physics Reports, 2018, 790: 1–48.

MAHIAN O, KOLSI L, AMANI M, ESTELLÉ P, AHMADI G, KLEINSTREUER C, MARSHALL J S, TAYLOR R A, ABU-NADA E, RASHIDI S, NIAZMAND H. Recent advances in modeling and simulation of nanofluid flows-part II: Applications [J]. Physics Reports, 2018, 791: 1–59.

LAAD M, JATTI V K S. Titanium oxide nanoparticles as additives in engine oil [J]. Journal of King Saud University-Engineering Sciences, 2016, 30: 116–122.

ROSTAMI M N, DINARVAND S, POP I. Dual solutions for mixed convective stagnation-point flow of an aqueous silica-alumina hybrid nanofluid [J]. Chinese Journal of Physics, 2018, 56: 2465–2478.

SHEIKHOLESLAMI M, HAYAT T, ALSAEDI A. On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders [J]. International Journal of Heat and Mass Transfer, 2017, 115: 981–991.

BHATTI M M, RASHIDI M M. Effects of thermo-diffusion and thermal radiation on Williamson nanofluid over a porous shrinking/stretching sheet [J]. Journal of Molecular Liquids, 2016, 221: 567–573.

MISHRA S R, BHATTI M M. Simultaneous effects of chemical reaction and Ohmic heating with heat and mass transfer over a stretching surface: A numerical study [J]. Chinese Journal of Chemical Engineering, 2017, 25(9): 1137–1142.

SIAVASHI M, RASAM H, IZADI A. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink [J]. Journal of Thermal Analysis and Calorimetry, 2018: 1–7.

NAKHCHI M E, ESFAHANI J A. Cu-water nanofluid flow and heat transfer in a heat exchanger tube equipped with cross-cut twisted tape [J]. Powder Technology, 2018, 339: 1399–1415.

HAYAT T, RASHID M, ALSAEDI A, AHMAD B. Flow of nanofluid by nonlinear stretching velocity [J]. Results in Physics, 2018, 8: 1104–1109.

BUONGIORNO J. Convective transport in nanofluids [J]. Journal of Heat Transfer, 2006, 128(3): 240–250.

KHANAFER K, VAFAI K, LIGHTSTONE M. Buoyancydriven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids [J]. International Journal of Heat and Mass Transfer, 2003, 46(19): 3639–3653.

NIELD D A, KUZNETSOV A V. The Cheng–Minkowycz problem for natural convective boundary-layer flow in a porous medium saturated by a nanofluid [J]. International Journal of Heat and Mass Transfer, 2009, 52(25, 26): 5792–5795.

TIWARI R K, DAS M K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids [J]. International Journal of Heat and Mass Transfer, 2007, 50(9, 10): 2002–2018.

CAPONE F, RIONERO S. Brinkmann viscosity action in porous MHD convection [J]. International Journal of Non-Linear Mechanics, 2016, 85: 109–117.

BACHOK N, ISHAK A, POP I. Boundary layer stagnationpoint flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid [J]. International Journal of Heat and Mass Transfer, 2012, 55: 8122–8128.

RAHMAN M M, ROŞCA A V, POP I. Boundary layer flow of a nanofluid past a permeable exponentially shrinking/stretching surface with second order slip using Buongiorno’s model [J]. International Journal of Heat and Mass Transfer, 2014, 77: 1133–1143.

AHMAD R, MUSTAFA M, HAYAT T, ALSAEDI A. Numerical study of MHD nanofluid flow and heat transfer past a bidirectional exponentially stretching sheet [J]. Journal of Magnetism and Magnetic Materials, 2016, 407: 69–74.

NIELD D A, KUZNETSOV A V. The Cheng–Minkowycz problem for the double-diffusive natural convective boundary layer flow in a porous medium saturated by a nanofluid [J]. International Journal of Heat and Mass Transfer, 2011, 54(1–3): 374–378.

MATIN M H, POP I. Forced convection heat and mass transfer flow of a nanofluid through a porous channel with a first order chemical reaction on the wall [J]. International Communications in Heat and Mass Transfer, 2013, 46: 134–141.

AHMED T N, KHAN, I. Mixed convection flow of sodium alginate (SA-NaAlg) based molybdenum disulphide (MoS2) nanofluids: Maxwell Garnetts and Brinkman models [J]. Results in Physics, 2018, 8: 752–757.

SHAHID A, BHATTI M M, BÉG O A, KADIR A. Numerical study of radiative Maxwell viscoelastic magnetized flow from a stretching permeable sheet with the Cattaneo–Christov heat flux model [J]. Neural Computing and Applications, 2017, 30: 3467–3478.

CASSON N. A flow equation for pigment-oil suspensions of the printing ink type [J]. Rheology of Disperse Systems, 1959, 4: 227–233.

SHEHZAD S A, HAYAT T, ALHUTHALI M, ASGHAR S. MHD three-dimensional flow of Jeffrey fluid with Newtonian heating [J]. Journal of Central South University, 2014, 21(4): 1428–1433.

RAMZAN M, FAROOQ M, HAYAT T, ALSAEDI A, CAO J. MHD stagnation point flow by a permeable stretching cylinder with Soret-Dufour effects [J]. Journal of Central South University, 2015, 22(2): 707–716.

KUMAR M S, SANDEEP N, KUMAR B R, SALEEM S. A comparative study of chemically reacting 2D flow of Casson and Maxwell fluids [J]. Alexandria Engineering Journal, 2017, 57: 2027–2034.

ABBAS T, BHATTI M M, AYUB M. Aiding and opposing of mixed convection Casson nanofluid flow with chemical reactions through a porous Riga plate [J]. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 2018, 232(5): 519–527.

MAHMOOD A, JAMSHED W, AZIZ A. Entropy and heat transfer analysis using Cattaneo-Christov heat flux model for a boundary layer flow of Casson nanofluid [J]. Results in Physics, 2018, 10: 640–649.

ALI F, SHEIKH N A, KHAN I, SAQIB M. Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model [J]. Journal of Magnetism and Magnetic Materials, 2017, 423: 327–336.

KHALID A, KHAN I, KHAN A, SHAFIE S, TLILI I. Case study of MHD blood flow in a porous medium with CNTS and thermal analysis [J]. Case Studies in Thermal Engineering, 2018, 12: 374–380.

RAZA J, ROHNI A M, OMAR Z. Triple solutions of Casson fluid flow between slowly expanding and contracting walls [J]. AIP Conference Proceedings, 2017, 1905(1): 030029.

NAKAMURA M, SAWADA T. Numerical study on the flow of a non-Newtonian fluid through an axisymmetric stenosis [J]. Journal of Biomechanical Engineering, 1988, 110(2): 137–143.

ZAIB A, BHATTACHARYYA K, SHAFIE S. Unsteady boundary layer flow and heat transfer over an exponentially shrinking sheet with suction in a copper-water nanofluid [J]. Journal of Central South University, 2015, 22: 4856–4863.

ROŞCA A V, POP I. Flow and heat transfer over a vertical permeable stretching/shrinking sheet with a second order slip [J]. International Journal of Heat and Mass Transfer, 2013, 60: 355–364.

WEIDMAN P D, KUBITSCHEK D G, DAVIS A M J. The effect of transpiration on self-similar boundary layer flow over moving surfaces [J]. International Journal of Engineering Science, 2006, 44(11, 12): 730–737.

ABBAS Z, MASOOD T, OLANREWAJU P O. Dual solutions of MHD stagnation point flow and heat transfer over a stretching/shrinking sheet with generalized slip condition [J]. Journal of Central South University, 2015, 22(6): 2376–2384.

MEGAHED A M. Slip flow and variable properties of viscoelastic fluid past a stretching surface embedded in a porous medium with heat generation [J]. Journal of Central South University, 2016, 23(4): 991–999.

POSTELNICU A, POP I. Falkner–Skan boundary layer flow of a power-law fluid past a stretching wedge [J]. Applied Mathematics and Computation, 2011, 217(9): 4359–4368.

HARRIS S D, INGHAM D B, POP I. Mixed convection boundary-layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip [J]. Transport in Porous Media, 2009, 77(2): 267–285.

ZHENG Lian-cun, LIANG Chen, ZHANG Xin-xin. Multiple values of skin friction for boundary layer separation flow in power law pseudoplastic fluids [J]. Journal of Central South University of Technology, 2007, 14(1): 218–220.

ROHNI A M, AHMAD S, POP I. Note on Cortell’s nonlinearly stretching permeable sheet [J]. International Journal of Heat and Mass Transfer, 2012, 55(21, 22): 5846–5852.

CORTELL R. Combined effect of viscous dissipation and thermal radiation on fluid flows over a non-linearly stretched permeable wall [J]. Meccanica, 2012, 47(3): 769–781.

HATAMI M, GANJI D D. Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods [J]. Case Studies in Thermal Engineering, 2014, 2: 14–22.